Case Studies Collaborative Robots

Swiss household device manufacturer V-Zug, was looking for a safe, innovative and cost-efficient automated solution to help its human operatives assemble and test control panels. It found it in the FANUC CR-7iA/L collaborative robot. As part of an automation system, the robot completes tasks such as button and control knob testing more accurately than humans using its sensitive Touchfinger. The benefits are increased efficiency and improved quality.

Identification of the task

To spearhead a new automated future for the company and keep it competitive, V-Zug launched a pilot project designed to improve the assembly and testing of the control panels for electric cookers and other household devices it manufacturers. After the panels are assembled manually and software is installed, the panels must be tested. Up to now, humans have done this. Thanks to their excellent repeatability and sensitive touch capabilities however, FANUC CR-7iA/L collaborative robots were identified as providing a more efficient solution.

Why human-robot collaboration was selected as a solution

Collaborative robots were introduced to improve quality and make processes more efficient. Before their introduction, the workers had to wait for the software download, which took about two minutes, before they could press the keys to test them themselves. All waiting times have now fallen away thanks to the collaborative robots. In addition, process quality has improved because the collaborative robot deals with the sensitive testing using a touch finger with an adjustable, always consistent pressing force, which is not possible for a human. The quality of the test results is now greater as a result.

A FANUC CR-7iA/L collaborative robot tests a control panel on an electric cooker.
A FANUC CR-7iA/L collaborative robot tests a control panel on an electric cooker.

How is it solved (configuration of the workplace and different steps of operation)

To launch the project, Patrick Meyer from V-Zug contacted the Swiss branch of FANUC, among others: “We are familiar with FANUC as a large robot manufacturer, which has been working with collaborative robots for years and offers a special model series.” Besides the requirements for the robot - it should possess process reliability and be easy to maintain - it was important to those making the decision to have a reliable partnership with good, rapid service.

The collaborative robot is actually suitable for direct collaboration with humans.
The collaborative robot is actually suitable for direct collaboration with humans.

A suitable model was found in the CR-7iA/L, a 6-axle robot with a range of 911 mm and 7 kg payload. For the specific project work at V-Zug, FANUC brought along an experienced industrial partner, R. Wick AG from Küssnacht, just a few kilometres away. For more than 15 years, the systems company has focussed on the development of automation solutions for small and medium-sized enterprises, whereby robotics technology plays a fundamental role.

Guido Lüönd, COO of Wick AG, explains: “Our main objective is to develop automation solutions which significantly increase productivity so that our customers also remain competitive in Switzerland as a place of production.”

Evaluation of the solution of the challenge

V-Zug is very satisfied with the procedure and result. Since the “panel testing” project certainly had a pilot character to it, the realisation that collaborative robots are actually suitable for direct collaboration with humans was important. Head of Planning Patrick Meyer says “… for our coming projects we will always consider collaborative robots because entirely new automation solutions are possible with this technology.”

All pictures: © FANUC

IFR Press Releases

Sales of industrial robots in India reached the new record of 3,412 new units installed in 2017. That is an increase of 30 percent compared to the previous year (2016: 2,627 units). Between 2012 and 2017 India saw a compound annual sales growth rate (CAGR) of 18 percent.

Broken down by industry, India´s automotive sector is the main customer with a share of 62 percent of the total supply 2017. Sales rose by 27 percent compared to the previous year.

India´s automotive industry announces expansion

“The automotive industry will remain the main driver of the increasing robot installations in India,” says Junji Tsuda, President of the International Federation of Robotics. “Numerous new projects are announced by the international and domestic car manufacturers aiming to expand production capacities. Moreover, OEMs increasingly require local supply of automotive parts.”

General industry is catching up

A clear sign that the general industry is catching up with the automotive sector can be seen by the sales numbers of industrial robots in i.e. the rubber and plastics industry, the metal industry and the electrical and electronics industry, which increased by 46 percent in 2017.

“The general industry will further invest in production capacities and modernization to serve this growing consumer market,” says IFR President Junji Tsuda. “Therefore, an accelerated and strong robot sales growth is expected between 2018 and 2021.”

India´s robot success story started in 2009 – robot density still low

India is one of the strongest growing economies among the Asian emerging markets. Since 2009, the number of robot installations has been growing rapidly. In 2017, India ranked No. 14 regarding the global annual supply, following Thailand and Spain. Regarding the operational stock, India ranked thirteenth following Canada, Spain and Singapore.

India´s automation potential is illustrated by a rather low robot density figure: 85 industrial robots per 10,000 employees in the automotive industry is less than a fourth of Indonesia´s density (378 units) and far away from China´s (505 units).


see below and robot pictures at newsroom

Press contact

Carsten Heer
Tel. +49 (0) 40 822 44 284
Email: [email protected]

Case Studies Collaborative Robots

German chainsaw manufacturer STIHL, already uses hundreds of robots in its manufacturing facilities. Now it’s added collaborative robots to one of its production lines. With the introduction of the FANUC CR-35iA, STIHL has taken a clear step forward in the development of production processes. Designed to work alongside humans, the FANUC CR-35iA is the world’s strongest collaborative robot and does all the lifting for staff on the disc cutter packaging line.

Identification of the task

The well-known German chainsaw manufacturer STIHL also manufactures a range of cut-off machines. A cut-off machine weighs around 10 kg, and without the assistance of the FANUC CR-35iA, the human operator has to lift each one single-handedly. Up to now, this has proven to be a considerable burden for the operator. Designed to do all the lifting and positioning work while interacting safely with humans, this is where the FANUC CR-35iA collaborative robot comes in.

Why human-robot collaboration was selected as a solution

Collaborative robots were introduced to reduce the physical strain on human operators and make processes more efficient. On STIHL’s new cut-off machine inspection and packaging line, the task of the robot is to remove the disc cutter from a suspended conveyor, carry out the shake test, and keep it suspended until a final visual inspection is completed. Subsequently, the robot then places the cut-off machine in a shipping box. To get the best results, the packing line staff were involved in the project from the outset. Not only were they able to give an expert assessment of the test set-up, but they also influenced the design and ergonomics, leading to the optimal solution.

How is it solved (configuration of the workplace and different steps of operation)

STIHL has taken a clear step forward in the development of technology using the FANUC CR-35iA. The start-up of production only took three days. This was due to the good preparation behind the deployment of STIHL’s first collaborative robot. Even on the first night shift, the robot ran without a single hitch. This is where the team of Group Leader, André Lange, who is responsible for service and hardware planning, benefited from the close familiarity with FANUC robot technology that they have developed over many applications.

The ability to use the FANUC CR-35iA with the normal FANUC control system, just like its yellow “colleagues”, proved to be one of the major advantages for STIHL since the control technology and user interface are all the same. The system components used, like the FANUC “Line Tracking” software, which is particularly useful for synchronisation with the suspended conveyor system, the integration of camera systems or the proven “Collision Guard” software option, are already well-known and appreciated by STIHL.

FANUC CR-35iA collaborative robots do all the lifting and let humans concentrate on carrying out the final inspection.
FANUC CR-35iA collaborative robots do all the lifting and let humans concentrate on carrying out the final inspection.© image: FANUC

This has huge benefits for STIHL. Since the first introduction of robotics in the mid-nineties, STIHL has accumulated a great deal of robotics engineering know-how, particularly with the hundreds of FANUC robots operating in across STIHL plants worldwide.

André Lange emphasises that “we adopt and follow relatively uniform production concepts at all locations. Production equipment, which is utilised worldwide, such as FANUC robots, makes life easier for us at various levels, from engineering and programming, right through to service.”

Evaluation of the solution of the challenge

The FANUC CR-35iA has been in daily operation for more than half a year, and it’s not just project managers André Lange and Markus Wahl that are satisfied with the robot. It has also been fully accepted by the workforce. Affectionately referred to internally as the Hulk, the collaborative robot is something that none of STIHL employees wants to do without.

The International Federation of Robotics (IFR) and IEEE Robotics and Automation Society (IEEE/RAS) are looking for applicants for the next IERA Award presentation. In 2019 the event will be hosted at the International Conference on Robotics and Automation (ICRA) in Montreal, Canada.

The IERA award is jointly sponsored and organized by IEEE Robotics and Automation Society (IEEE/RAS) and the International Federation of Robotics (IFR). It highlights and honors the achievements of inventors with value creating ideas and entrepreneurs who propel those ideas into world-class products.

All submitted entries will be evaluated based on criteria that give equal consideration to both innovation and entrepreneurship. The winner will be awarded with a plaque and a $2000 cash prize. For additional details on the award and a list of the winners from the previous years, please see IEEE webpage.

In 2019 IEEE/RAS will host the IERA Award presentation. The finalists will present their innovation at a session which will be part of the ICRA. The ICRA takes part from 20 to 24 May 2019 in Montreal, Canada.

Please download below call for application to get the details.

Case Studies Collaborative Robots

Designed for use in Small Parts Assembly, YuMi will work side-by-side with a human counterpart at ABB Elektro-Praga on its socket lid assembly line. Thanks to its inherently safe design, the collaborative dual arm robot solution will ensure the safety of those around it and elevate the nature of work at the plant by performing repetitive tasks to perfection.

“We are very excited to add YuMi to our production line. The robot solution brings unique advantages to this assembly process including greater flexibility, improved quality, increased safety and better workplace ergonomics,” says Tanja Vainio, Country Manager, ABB Czech Republic. “YuMi’s outstanding features for collaborative small parts assembly is the perfect solution for Elektro-Praga which wanted an easy to use robotic solution capable of working side-by-side with humans on similar tasks.”

YuMi will utilize connected services developed by ABB which will monitor the robot during production and operation. The ability to monitor YuMi in this manner will increase its efficiency, reduces service costs, secure uptime and extend its lifetime. Thanks to these diagnostic technologies a once reactive approved to fleet management is replaced by a predictive, proactive, and immediate one. Prior to the advent of the Internet of Things Services and People, robots were maintained according to a schedule.

“YuMi, short for you and me, will open up more opportunities for Czech businesses like Elektro-Praga to improve their productivity. Task sharing between humans and robots is a great way to accelerate production,” said Vainio.

YuMi, the world’s first truly collaborative dual arm robot, represents another step in ABB’s Next Level strategy aimed at accelerating sustainable value creation. The strategy is building on ABB’s three focus areas of profitable growth, relentless execution and business-led collaboration.

Assembly application

The collaborative workstation consists of YuMi, a human operator, sensor devices, conveyors, vibration feeders, and a spring disentangling system. YuMi handles springs, child locks and child lock covers. The assembly process is triggered by the human operator who places two socket lids and two child lock covers in front of the robot.

YuMi working together with worker, @ image: ABB
YuMi working together with worker, @ image: ABB

YuMi uses its suction grippers to grasp the child locks which it then places into prepared socket lids. Next, YuMi takes springs from the feeder (two pieces per each socket), and puts them into the space between the child lock and the socket lid. The robot then grasps the child lock cover with its gripper and places it on the socket lid which is equipped with a child lock and spring. The socket assembly is completed by pushing the child lock cover into the socket lid. The operator inserts a screw into the lid and sends the completed socket for packaging. In addition to parts handling, the human operator is responsible for supervision of the overall assembly process.

Since 2013, global sales of industrial robots have accelerated reaching an all-time high of more than 380,000 units, twice as much as in 2013. After this period of high demand, installations of industrial robots only slightly increased in the first half of 2018.

Dear Reader,

This was a normal cyclical effect after continued large investments of the automotive industry and the electronics industry. But in the past months, uncertainties loom over investment plans in North America, China, and other Asian countries mainly due to protectionists measures damaging free trade. However, incentives for robot installations remain excellent. Numerous investment plans are aimed at using robotics and automation in almost all industries. Investments in automation may be restrained due to the increasing uncertainties of the global economy, but investments will continue perhaps shifted to a later point in time.

Automation is changing the way we work and, to an increasing extent, the way we live. Automation improves productivity and enables companies, and nations, to remain or become competitive. It enables new business models focused on providing new goods and services, and helps companies improve the efficiency and flexibility of supplying those goods and services. Economists agree that increased productivity is key to improving Gross Domestic Product, the value of goods and services produced in a country, and in turn, jobs and wages.

We will meet from 8 to 11 April 2019 at the Automate in Chicago. The theme is: Win the Future! Automate 2019 will explore how automation secures a company’s success in a technologically fast-paced world where artificial intelligence (AI), Industrial Internet of Things (IIoT), smart manufacturing, collaborative robots (cobots), machine vision and other innovations are rapidly shifting the dynamic of today’s manufacturing.

The robotics industry is still at the beginning of a demanding and exciting future. The best is still to come!

We are looking forward to a successful year 2019!


Junji Tsuda


Automate 2019, North America’s largest showcase devoted to automation industry trends, leading-edge technology and business innovation, returns to Chicago’s McCormick Place April 8–11. Produced by the Association for Advancing Automation (A3), Automate hosts many of the industry’s leading manufacturers and system integrators of robotics, machine vision, metrology, software, safety, motion control and motors.

Highlights of the biennial show and conference include:

  • Examples of how the latest innovative automation solutions, including robots, machine vision and motion control, can solve real-world challenges.
  • The $10,000 Launch Pad Startup Competition, which seeks out automation-focused companies that have launched in the last five years; generated less than $2 million in revenue and are not affiliated with a larger group. Call for participants will be announced soon.
  • Small group discussions in the theater covering a wide variety of topics important to the automation industry.

Win the Future

Focused on the theme of Win the Future, Automate 2019 will explore how automation secures a company’s success in a technologically fast-paced world where artificial intelligence (AI), Industrial Internet of Things (IIoT), smart manufacturing, collaborative robots (cobots), machine vision and other innovations are rapidly shifting the dynamic of today’s manufacturing. Automate attracts more than 20,000 attendees, including corporate decision makers across the United States and more than 80 countries as well as press and analysts.

“Automate attendees come seeking ways automation can help improve productivity and product quality, reduce costs, speed time to market and augment their workforce,” said Jeff Burnstein, A3 president. “Collaborative and mobile robots, along with AI, machine vision and motion control, are among the many technologies that will be showcased at Automate, all helping decision makers identify ways automation can fill workforce gaps by working alongside employees who are focused on more critical tasks. These innovations better equip companies to improve their competitive positioning in today’s global market.”

More Features of Automate 2019 Show & Conference

In addition to the highlights previously mentioned, Automate 2019 will include:

  • The Engelberger Robotics Awards presented in the categories of Leadership and Education
  • Full integration with the 51st International Symposium on Robotics-Americas (ISR), a prestigious event that brings together thought leaders from around the globe to discuss the latest applications and research in the field of robotics and other automation technologies
  • All coursework and exams required for the AIA’s Certified Vision Professional (CVP) basic and advanced certifications and Motion Control & Motor Association’s (MCMA) Certified Motion Control Professional (CMCP) training. Interested attendees can visit Automate 2019 to register.

One Badge, Two Shows

Automate 2019 attendee badges also gain admittance to ProMat 2019, held at the same location. ProMat is the largest exposition for material handling, logistics and supply chain professionals in North America, including over 950 exhibitors.

Register Today

Attendee registration for both the expo and conference, with free access to the show floor, is now open. Prospective exhibitors can find more information on exhibition opportunities on the event website. Press passes and exhibitor news are available at the Automate press site.

Case Studies Collaborative Robots

Specialist glass maker Saint Gobain uses a collaborative robot equipped with a force-torque sensor for glass polishing, reducing production time by one third and freeing workers from the constant vibration of manual polishing. Employees now program the robot by guiding the arm, prepare the glass and also wash the polished glass.

Saint-Gobain’s plant in Sully-sur-Loire, France, focuses on glass production for the armoured and aeronautical industries, and the civil market. In their shift towards industry 4.0, management has deployed collaborative robot cells to free employees from tedious, repetitive tasks. ​Robotiq’s FT 300 Force Torque Sensor​ ​​has​ ​proven​ ​essential​ ​to​ ​automate​ ​the​ ​grueling​ ​glass​ ​polishing​ ​process.

Saint-Gobain was founded in 1665 as a public society manufacturing luxury mirrors and glass under King Louis XIV’s reign. The corporation kept high quality standards through the centuries, expanding its business throughout the whole housing industry. Now a global company, it employs more than​ ​185,000​ ​people​ ​worldwide.

Near its original headquarters in the outskirts of Paris, Saint-Gobain still works on high-end glass production. Human labor provides high-value work to the finished product. But some tasks are more tedious than others. This is why the Sully-sur-Loire factory, like many other Saint-Gobain plants, began to deploy​ ​collaborative​ ​robot​ ​cells​ ​into​ ​their​ ​process​ ​about​ ​a​ ​year​ ​ago.

Building​ ​the​ ​factory​ ​of​ ​the​ ​future

Freeing employees from those grueling tasks begins with finding a technology that would do the job on their behalf. Saint-Gobain’s Digital Manufacturing Manager, Ignacio Sanchez, had to find a solution for a difficult glass polishing process. The operation is painful, frequently causing musculoskeletal disorders for workers.

“The operator had to polish all of the glass surface, repeating the same movement on and on,” Sanchez explains. “He then does the surface preparation of the glass before it becomes one of many layers of an armoured glass. This second step is a lot easier. We wanted an automated solution for the polishing part of​ ​the​ ​process.”

“We naturally chose to work with Universal Robots on this project considering safety​ ​requirements,​ ​the​ ​ease​ ​of​ ​use​ ​that​ ​was​ ​required,​ ​all​ ​this​ ​in​ ​a​ ​small​ ​space.”

Saint-Gobain turned to local automation solutions provider, HMI-MBS engineering and services, for expert advice. Their representative Nicolas Bouhet quickly presented a first option. “Saint-Gobain’s application had a very important diversity of reference points. There was also a problem of production space, since the cell had to be deployed in a small area in order to work in collaboration with the operators. We naturally chose to work with niversal Robots on this project considering safety requirements, the ease of use that was required, all this​ ​in​ ​a​ ​small​ ​space.​ ​We​ ​chose​ ​the​ ​UR10​ ​model​ ​to​ ​be​ ​able​ ​to​ ​reach​ ​every​ ​area​ ​of​ ​every​ ​type​ ​of​ ​glass.”

© image: Robotiq
© image: Robotiq

A​ ​different​ ​path​ ​for​ ​each​ ​glass

HMI-MBS performed many tests at their lab, which is about 15 minutes from Saint-Gobain’s plant. The first proofs of concept did not deliver viable options. “We ended up in a dead-end,” recalls Bouhet. “Then we had the idea to use the ​FT 300 module with the path recording function. We managed to integrate it into the robot and continued with tests at our offices. We then moved to Saint-Gobain and worked with the operator​ ​to​ ​see​ ​if​ ​the​ ​product​ ​met​ ​Saint-Gobain’s​ ​expectations.”

“Programming a robot movement that must follow a volume in space is a complicated thing to do. We were able to do it with the​ ​path​ ​recording​ ​function​ ​of​ ​the​ ​FT​ ​300”. Testing at HMI-MBS helped minimize the time needed to implement the robot into production. When everything was ready, the UR10 and FT 300 combo took part of the work over from the operator, and both started working together*. “Without the FT 300, this operation would have been quite complex since the programming of a robot movement that must follow a volume in space is a complicated thing to do,” adds Bouhet. “With the ​path recording function of the FT 300, the operator can grab the device and make the movement; the Universal Robots UR10 then records and reproduces​ ​the​ ​operator’s​ ​motion.”

© image: Robotiq
© image: Robotiq

We’re able to produce the same amount of work in two 8-hour shifts instead of three,​ ​before​ ​the​ ​robot​ ​arrived.” For Christophe Legeay, Methods Technician at Saint-Gobain Sully-sur-Loire, automating the polishing process of each layer of armoured glass gave relief to operators who were previously assigned to this task. “It allowed them to no longer experience vibrations in their shoulders or perform repetitive movements.​ ​The​ ​installation​ ​of​ ​the​ ​robot​ ​was​ ​more​ ​than​ ​welcome,”​ ​he​ ​explains.

From now on, all the operator has to do in the polishing process is program the proper path for the product and set the glass for polishing. “The robot asks us to place reference marks to check the positioning. You cannot run your application until you have validated your positions. As soon as the validation is done, you press​ ​start​ ​and​ ​the​ ​robot​ ​starts​ ​running.”

Human​ ​+​ ​machine​ ​collaboration​ ​increases​ ​productivity

While polishing is in progress, the operator simultaneously washes the glass that was previously polished. Then it’s time for surface preparation, a process in which human labor brings much more value into the product. “We assigned the robot to the hardest part of the polishing process,” recalls Sanchez. “During this time, the operator can focus on surface preparation. We’re able to produce the same amount of work in​ ​two​ ​8-hour​ ​shifts​ ​instead​ ​of​ ​three,​ ​before​ ​the​ ​robot​ ​arrived.​ ​We’ve​ ​achieved​ ​ROI​ ​in​ ​less​ ​than​ ​a​ ​year.”

“By​ ​empowering​ ​the​ ​operator,​ ​allowing​ ​him​ ​to​ ​do​ ​the​ ​program​ ​himself,​ ​we​ ​avoid calling​ ​an​ ​integrator​ ​every​ ​time​ ​a​ ​product​ ​comes​ ​back​ ​into​ ​production.” Capacity​ ​increased​ ​by​ ​30%,​ ​allowing​ ​Saint-Gobain​ ​to​ ​deliver​ ​orders​ ​on​ ​top​ ​of​ ​those​ ​initially​ ​scheduled.​ ​“A product​ ​might​ ​come​ ​back​ ​once​ ​every​ ​one​ ​or​ ​two​ ​years.​ ​We​ ​often​ ​have​ ​to​ ​create​ ​a​ ​new​ ​program.​ ​By empowering​ ​the​ ​operator,​ ​allowing​ ​him​ ​to​ ​do​ ​the​ ​program​ ​himself,​ ​we​ ​avoid​ ​calling​ ​an​ ​integrator​ ​every time​ ​a​ ​product​ ​comes​ ​back​ ​into​ ​production.​ ​This​ ​is​ ​one​ ​of​ ​the​ ​goals​ ​of​ ​our​ ​digital​ ​manufacturing​ ​project,​ ​in which​ ​cobots​ ​will​ ​play​ ​a​ ​huge​ ​role,”​ ​Sanchez​ ​explains.

© image: Robotiq
© image: Robotiq

In​ ​a​ ​factory​ ​where​ ​human​ ​labor​ ​delivering​ ​high-end​ ​quality​ ​has​ ​been​ ​a​ ​tradition​ ​over​ ​the​ ​last​ ​350​ ​years, robots​ ​are​ ​seen​ ​as​ ​a​ ​helping​ ​hand​ ​for​ ​human​ ​workers​ ​aiming​ ​for​ ​perfection.​ ​“We​ ​do​ ​not​ ​cut​ ​jobs​ ​like​ ​it’s often​ ​perceived​ ​when​ ​a​ ​robot​ ​is​ ​installed​ ​somewhere,”​ ​concludes​ ​Sanchez.​ ​“It’s​ ​a​ ​collaboration​ ​between man​ ​and​ ​machine​ ​that​ ​allows​ ​us​ ​to​ ​remove​ ​grueling​ ​tasks​ ​from​ ​the​ ​hands​ ​of​ ​operators.​ ​This​ ​is​ ​the​ ​goal and​ ​it’s​ ​fairly​ ​well​ ​perceived​ ​here.”

OnRobot / Case Studies Collaborative Robots

Rosborg Food Holding, Denmark's largest producer of herbs and miniature plants, uses a collaborative robot in its packaging operations to pick up pots of herbs from a conveyor belt and place them in cartons. The robot is also used to pick up and position cardboard boxes in place for another machine to insert pre-packaged salad

The use of herbs was already common in Babylon about 4,000 years ago. The ancient Egyptians and Greeks developed and refined the cultivation of herbs for the up-and-coming art of healing and as a culinary delicacy. In the 21st century, it is robotic technology that increasingly provides us with herbs as a fragrant, tasty food.

In Odense, Denmark, Rosborg Food Holding’s greenhouses cover around 120,000 square metres. Mint, dill, tarragon and other delicious plants as well as miniature roses thrive in a state-of-the-art production facility. Here, a total of 130 employees produce, pack and sell 28 million herbal plants and 12 million miniature plants, which go by product names such as Gloria Mundi, Økologihaven or Eurostar. The Danish plant breeding company has been producing spices and mini flowers for retail and catering sectors since 1980. However, it can only meet the constantly growing demand for its broad product range subjected to a high degree of seasonality by comprehensive rationalization and automation measures.

Better working conditions with higher productivity

“We are continuously working to improve the productivity and efficiency of our processes,” says Henning Jørgensen, partner and plant manager of Rosborg Food Holding. “By finding automation solutions for monotonous, physically demanding tasks, we can relieve our employees. At the same time, it helps us to reduce the number of overtime hours and the employment of temporary staff”.

OnRobot’s collaborative grippers can be put into operation according to the plug & play principle, © image: OnRobot
OnRobot’s collaborative grippers can be put into operation according to the plug & play principle, © image: OnRobot

The executives at Rosborg were looking for a way to increase available capacities in day-to-day operations to be able to double production at peak times such as Christmas, New Year’s Eve or Easter without losing revenue due to overtime and replacement workers. “So far, our profit margins have been shrinking at such times with high production volumes. That’s why our employees have a positive attitude towards the prospect of using collaborative robot technologies as production support in order to work more efficiently and reduce overtime,” Jørgensen describes the situation.

In 2013, a new owner initiated a fundamental modernization process of the company’s entire production. 37 million Danish crowns were invested in new, highly efficient greenhouses equipped with automation technology and robots. At the same time, Rosborg has expanded its product range to meet the growing demand for herbs other than those traditionally used in Scandinavian cuisine. In addition to robots and employees, ten different types of useful insects operate in the greenhouses to keep pests away from the plants.

Robot hand with a sense of touch

One of the latest automation investments is a flexible packaging line with a so-called “Cobot” from Universal Robots, a collaborating robot equipped with an RG6 gripper from OnRobot. The two “fingers” of the robot gripper feature intelligent, advanced technology, that mimics the human sense of touch when intuitively gripping and moving objects.
“We were looking for a gripper that could gently lift the herbs and flowers without crushing them,” explains plant manager Jørgensen. “We chose an R6G gripper, which is characterized by gentle and careful gripping movements as well as precision and flexibility. Our new solution automates the folding of packaging cartons and the placement of herbal fine cuts in the folding boxes.”

The new generation of collaborative robots places extremely diverse demands on the robot hand at the end of the robot arm. “What the gripper needs to be capable of depends entirely on the selected task,” says Enrico Krog Iversen, CEO of OnRobot. “The more user-friendly, flexible and careful the gripper is, the greater the variety of tasks that can be automated, and the faster the robots and grippers pay off for the buyer.” This is also confirmed by Jørgensen: “When choosing our solution, the best possible payback period was of course a crucial factor.”

A playful and successful start

Rosborg Food chose a playful, interactive approach for the introduction of robotics in Denmark. “Before we even knew what exactly we wanted to automate, we purchased a robot arm and a gripper via the MELCNC integrator,” says Jørgensen. “We’ve experimented with it and invented some funny applications.” In this way, the employees got to know the robot arm and gripper right from the start as an easy-to-use, helpful tool. “Once we programmed the Cobot so that it could write the boss’s name on a blackboard on his birthday. And at the official inauguration of a new greenhouse, the robot handed over the scissors to Jane Jegind, member of Odense City Council, so that she could cut the red ribbon,” recalls the plant manager.

OnRobot’s new collaborating gripper RG6 can move loads of up to six kilograms with an adjustable force between 25 and 120 Newton, © image: OnRobot
OnRobot’s new collaborating gripper RG6 can move loads of up to six kilograms with an adjustable force between 25 and 120 Newton, © image: OnRobot

Configurating the applications and the automated packaging solution is so intuitive that even employees without prior experience can do it. It is sufficient to simply adjust the settings on the touch screen of the robot arm, for instance to configure the application for packaging other types of products. The software for controlling the RG6 gripper is extremely user-friendly, too. At the touch of a button, it can be installed on the robot arm like an app on a smartphone.

Henning Jørgensen is already planning the next steps regarding the automation of Rosborg Food Holding: “The next project will be the acquisition of a further collaborating robot with a gripper suitable for equipping a cutting machine for the herbs.” Perspectively, arm and gripper are supposed to carefully pick up the plants, turn them and then place them on the conveyor belt to the cutting machine.

Yaskawa / Case Studies Collaborative Robots

Plastic component manufacturer Weiss Kunststoffverarbeitung uses collaborative robots to assemble complex components containing metallic parts as well as plastic parts moulded by Weiss. Workers place some of the parts into a fixture, then the robot inserts additional parts, and places the assembled valve in a device for pressure testing.

The collaboration of humans and robots is a hot topic in the field of automation technology. Weiss Kunststoffverarbeitung GmbH & Co. KG has developed a robot cell ‘by its own resources’ in which the operator and robot share the complex assembly of a miniaturized safety valve.

The division of labour between plastics processors and their customers is changing. Rather than injection-moulded parts, customers are frequently asking for complete, ready-to-install components. That applies not only to the automotive industry, but also to other sectors, e.g. the household appliance and mechanical engineering industries.

For this reason, the assembly sector at Weiss Kunststoffverarbeitung GmbH & Co. KG has been constantly expanding over the past few years. As an engineering-oriented enterprise, Weiss is striving to meet the latest trends in this sector.

The robot cell that was recently put into operation at the Illertissen plant is a good example. A safety valve with a height of only 15 mm is being assembled in the cell where, in addition to injection-moulded parts, filigree metallic bought-in parts such as springs, washers, valve tappets and balls are also used.

In doing so, the company’s assembly specialists implemented the principle of division of labour between humans and robots in practice.

Dipl.-Ing. Robert Heller, responsible among other things for the construction of production and automation technology at Weiss: “The robot works extremely accurately and reliably, while the worker – although he may make mistakes – is more flexible.”

The cell is designed so that each ‘colleague’ can leverage his respective strengths. In the first step the worker, standing in front of the cell, places the key components into an assembly fixture. The robot, situated in the cell, takes over by inserting further small parts, e.g. a tiny ball. The worker then gives the signal to compress the parts, and this takes place pneumatically by means of a cylinder.

Now it is the turn of the robot. It removes the assembled valve from the fixture and inserts it into a testing device, where it is subjected to two pressure tests at 0.9 and 2 bar. Following this 100% test (by which the valve remains closed for the 0.9 bar test and must open when a pressure of 2 bar is applied) a certification stamp is applied with a marking system, and the valve is ready for shipping.

human and robot in the common workspace, © image: YASKAWA
human and robot in the common workspace, © image: YASKAWA

The principle of human-robot-collaboration was put into practice by Weiss in a simple yet elegant way: human and robot each have access to the common workspace. They dispensed with a safety guard or other form of spatial separation of worker and robot. Instead, the workspace is secured on both sides by a photoelectric cell. The two photoelectric cells are interconnected for control and safety purposes, so that the robot does not reach into the joint workspace when the operator is inserting or removing parts. Conversely, the robot is stopped if the worker reaches into the workspace while it is operating there.

It goes without saying that the control of the robot is also integrated into this quite simple and practical safety concept. Robert Heller: “We took advantage of the robot manufacturer’s ‘Function Safety Unit’ that is now available as an option: a slot-in card with which, for example, safety zones can also be programmed.”

With the collaborative robot cell, the engineers at Weiss have once again demonstrated that innovative and highly efficient production solutions can be developed in-house – not only in plastics processing or tool and mould making, but also in the downstream processes of assembly and testing technology.

Case Studies Collaborative Robots

Force-feedback technology in cobots enables the automation of applications such as polishing that require fine-tuning of applied pressure. Paradigm, a manufacturer of high-performance loud speakers and subwoofers achieved a 50% productivity increase with a collaborative robot working alongside an employee to polish and buff lacquered speaker cabinets.

In Short

Paradigm Electronics is a manufacturer of high performance loud speakers and subwoofers. In trying to meet demand on labor-intensive products, Paradigm has now implemented Universal Robots in polishing applications, resulting in significantly increased production throughput eliminating bottle necks while improving the work environment.


When Paradigm launched the “Midnight Cherry” finish on a line of new speakers, the market quickly embraced the new product made entirely in-house at the Toronto-based manufacturer now faced with a challenge to make even more than anticipated of the new cabinets.

multiple layers of lacquer must be applied, © image: Universal Robots
multiple layers of lacquer must be applied, © image: Universal Robots

“In order to produce that finish, you have to apply multiple layers of lacquer and between each layered application, you have to sand and buff, sand and buff. There’s a lot of manual labor involved in that. The problem is to find people who can do that, we just couldn’t find enough skilled people,” says Director of Operations Oleg Bogdanov.

The company had already implemented one robotic cell with a cartesian type robot, but it required a lot of safety guarding around it for the protection of the worker.

“It really didn’t allow for an employee to work in conjunction with the robot at all. The application of buffing is one that requires a lot of observation and collaboration by the operator, so having the work being done in a remote cell just didn’t seem to be a workable solution,” says Senior Manager of Production Services at Paradigm, John Phillips.


Paradigm had an industry expert with a specialty in robotics applications come in, making the company aware that collaborative robots from Universal Robots could be a solution to the Midnight Cherry challenge.

 human and a robot working in the same workspace, @ image: Universal Robots
human and a robot working in the same workspace, @ image: Universal Robots

“Collaborative robots was a new technology and it lead to further investigation. This kind of robot allowed us to have a human and a robot working in the same workspace. They’re now working in a pendulum type of an operation where they can safely interact, allowing the human to check whether the robot has done an adequate amount of work before the final polishing is handed over to the human. It’s a very hand-in-hand kind of operation,” says Phillips, emphasizing the simplicity of the robot cell.“Usually with all of the physical guards that are required in order to make the work cell safe for the human, there’s a long implementation period. The cartesian robot took five months. The implementation from the time of the receipt of the UR robot was just over a month.”

The implementation solved Paradigm’s back log on the popular cabinets by increasing throughput by 50%. Before choosing the UR robot, Paradigm conducted a thorough research of the collaborative robot market.

“Once we realized that a collaborative robot was a viable alternative for us, we did our homework and checked around the rest of the opportunities that were out there from different manufacturers. We found that for our application, the UR robot was not only the best robot for the application, but it was also the most cost efficient,” says Phillips, mentioning the UR robots’ built-in, adjustable force mode feature as another deciding factor.

“If too much force is applied, the surface heats and the results go the opposite direction to what you’d hoped. So having the robot work with a specific force was a huge advantage. We were aware of technologies that allowed for a force feedback system but they were actually as expensive as the entire UR robot. So it was quite exciting to find that it had capabilities of force feedback within its inherent structure,” says Paradigm’s Manager of Production Services, who is now investigating future applications for the UR robots. “We’re looking forward to being able to use Universal Robots in our various paint spraying processes and we’re also bringing in a new line of speakers that have a parabolic shape where we could utilize the adjustable force mode that allows us to determine a specific force at a particular point in the path of the robot. This will be very useful when it comes to sanding those non-plane facets.”

KUKA / Case Studies Collaborative Robots

Automotive manufacturer, Škoda uses collaborative robots in the assembly of automatic transmission systems. Workers bring gear actuator pistons to a collaborative robot which inserts them into the transmission housing. Torque sensors provide feedback on resistance, enabling the robot to insert the components without forcing them into place.

KUKA and MATADOR Group are partnering with Škoda Auto in an Industry 4.0 venture that involves hardware, software and people. Collaborative robotics, a concept that is transforming 21st-century industry, is a determining factor as well.

Identification of the task

In 2011, Volkswagen decided to convert the 1,000-employee Škoda Auto factory in Vrchlabí in the Czech Republic into one that exclusively produces its DQ200 seven-gear, dual-clutch, direct-shift automatic transmission, regarded as one of the most innovative in the car industry. KUKA and MATADOR Group played a unique role in the transformation.

Why HRC was selected as a solution

“This kind of transmission has very high requirements for precision,” says Ivan Slimák, General Manager at the Vrchlabí plant. “For example, we have a lot of moving parts with very, very tight tolerances. We have tolerances in the range of three to five micrometre. A human hair is about 60 micrometres, so our tolerance is only a fraction of the width of a human hair.” This kind of precision is what the collaborative KUKA LBR iiwa does best. Then, there’s the other LBR iiwa advantage: safety and its related payoff.

Robotics represents part of the modernization of the plant and will lead to more invest-ment and innovation. © image: KUKA
Robotics represents part of the modernization of the plant and will lead to more investment and innovation. © image: KUKA

How is it solved (configuration of the workplace and different steps of operation)

The KUKA LBR iiwa inserts the gear actuator pistons precisely using input from the sensors on each of its seven axes. These sensors register any possible contact with humans and other potential barriers, ensuring both maximum safety for the workers as well as maximum protection for part quality. It is the unique sensitivity of the LBR iiwa that allows it to “feel” where the components need to be inserted rather than forcing them into place. This is invaluable for handling delicate parts that are prone to damage during assembly – parts with tolerances of three to five micrometres, for example.

Production employees now work alongside the KUKA LBR iiwa on high-precision tasks without the need for safety fencing. © image: KUKA
Production employees now work alongside the KUKA LBR iiwa on high-precision tasks without the need for safety fencing. © image: KUKA

Then, there’s the other LBR iiwa advantage: safety and its related payoff. “Conventional robots must be inside a protective cage and cannot work directly with people,” says Jiří Svatý, Process Planning Assembly at the Vrchlabí plant. In comparison, the LBR iiwa offers easy and free access. “In this cell we don’t need or use laser scanners or other devices for worker safety, so it gives us more space for developing the process, and it gives us an opportunity to save time for assembly and integration.” This elimination of safety fencing around the robot enables the automation of processes in limited spaces without having to modify existing production lines. The LBR iiwa benefits extend beyond the hardware kingdom and into the digital empire.

Evaluation of the solution of the challenge

“I think the most challenging job was to learn the Java programming language and to change the meaning of how robots are programmed in the application,” says Stanislav Korec, Head of Robotics and PLC Programming at MATADOR Group.

MATADOR Group was tasked with including the KUKA LBR iiwa in its concept for the Škoda plant in Vrchlabí and this was a valuable learning experience for the Slovakian company. The learning curve for MATADOR Group included an understanding of the KUKA Sunrise control system, which combines motion and sensor systems in response to present-day programming requirements for service robotics. Together with the use of Java as the programming language, the upside is that there is almost no limit to the variety of automation options.

The digitization of production means that the Vrchlabí plant of Škoda is becoming more data driven. © image: KUKA
The digitization of production means that the Vrchlabí plant of Škoda is becoming more data driven. © image: KUKA

The Škoda plant was rewarded for its work when the consulting firm A.T. Kearney and the trade journal Produktion named it the 2015 Factory of the Year for “global excellence in operations.” In other words, human-robot-collaboration on the Škoda factory floor is viable and successful.

Case Studies Collaborative Robots

In this example of screw tightening at Chinese automotive manufacturer CSVW, a collaborative robot picks up a screw tightening gun to tighten three screws on an engine, puts down the first gun, then picks up a second in tighten two other screws. A worker meanwhile performs other tasks on the engine.

Identification of the task

The automobile engine assembly process is flexible and complex and the Operator’s station is relatively compact. This project is conducted using SIASUN SCR5 collaborative robot to complete the screw tightening task of automobile engine assembly line. There is no need to install protective fencing on the site, operators and SCR5 robot are in the same workspace to complete the various tasks. The SCR5 robot holds the tightening gun to tighten 5 screws of 2 types and the robot can change the tightening gun automatically by equipping a changing gun plate at the end. While the robot is tightening the screw, the operator on site completes the operation of lubricating and other parts assembling.

Why human robot collaboration is the optimal solution?

In the automotive industry, the automation rate of pressing, welding, painting and final assembly processes is already very high, but the engine and final assembly plants are unable to use traditional automation equipment to realize automatic reformation due to the complex and flexible assembly processes of the engine and the whole vehicle and the compact workspace. However, collaborative robots have unique advantages over traditional industrial robots, and can effectively help automobile manufacturers to achieve the goal of automatic reformation.

The advantages are as followed. First of all, the collaborative robot has the safety features of collision detection, so there is no need to install protective fencing to ensure the safety of operators, and the robot footprint is quite small which effectively saves the operation space. Secondly, the collaborative robot is designed with light weight to better adapt to the complex and flexible process in the production site. Thirdly, collaborative robot has the function of traction and demonstration in programming. It can be programmed by manual dragging, which greatly reduces the time of instruction and reduces the difficulty of operation and makes it easier to use.

Tractive teaching realizes trajectory programming
Tractive teaching realizes trajectory programming, © image: SIASUN

How is it solved (configuration of the workplace and different steps of operation). This project uses one SIASUN SCR5 collaborative robot and robot base, two tightening guns, one changing gun tray and other necessary fixtures to realize screw tightening.

Here are the following steps

  1. After the engine is in place, and jacked to the right position, the signal is given to the robot. The SCR5 robot holds 1 tightening gun by the changing gun tray to complete the tightening task of 3 screws on the engine sequentially. The tightening torque is controlled by tightening gun.
  2. SCR5 put down the first gun and replace the second gun to tighten the other two screws in order.
  3. When the screws are being tightened, the cooperative robot and the on-site workers are in the same operating position to share workspace. The on-site workers install the back oil seal to the cylinder block and then pre-tight 8 bolts combined with oil seal and cylinder block.
  4. The SCR5 robot puts down the tightening gun and returns to its original position.
  5. After the robot is in place, the completed signal is given to the work station, the production line is released into the next process
SCR5 carries a tightening gun to complete the assembly of the engine nozzle
SCR5 carries a tightening gun to complete the assembly of the engine nozzle, © image: SIASUN

Comment to the project solution

The project used the domestic collaboration robots with completely independent intellectual property rights, completed engine assembly screw task. With no fences and a small working space, this project realizes the task with the cooperative safety operation between human and robots, completes the designated operation tasks stably and efficiently, helps customers improve product quality and saves labor costs. This truly reflects the collaboration function of collaborative robot, and helps revolutionizing the automobile manufacturing mode.

Case Studies Collaborative Robots

Schunk, a manufacturer of robot grippers, uses a collaborative robot in the pre-assembly process. A robot equipped with a camera takes base housings from a container and brings them to the worker. The robot also tightens screws, closes air connections on the gripper and strips excess glue. Meanwhile, workers complete tasks requiring high dexterity.

In the production of modern gripping systems numerous product variants are being manufactured, and provided in different batch sizes. The grippers were assembled manually on conventional assembly workstations up to now. Associated with this are one-sided physical strain, the danger of injuries, for example during chamfering, and comparatively high costs for purely manual activity. The goal of one HRC project at the SCHUNK smart factory was to use HRC systems to increase employee flexibility, reduce workplace monotony, improve ergonomics, and reduce manual cost per item.

Instead of completely automating processes, partial automation is currently gaining in importance, in which the strengths of humans and the strengths of robotics are brought together synergistically. The driving forces behind human/robot collaboration (HRC) are relieving the workforce of stressful or monotonous work steps, improving ergonomics in the workplace, especially against the background of demographic change, making work processes more flexible, increasing efficiency and optimizing logistics, handling and loading processes. This need for change also affects the production of SCHUNK, the competence leader for gripping systems and clamping technology.

Careful workplace analysis as a starting point

Before the project started, the SCHUNK team analyzed which change processes are associated with the introduction of an HRC application. On the one hand, it is important to create the technical prerequisites for standard-compliant workplace operation and thus legal certainty for the operators and, on the other hand, to gain the acceptance of the employees for the robot as a colleague.

In the course of a work process evaluation, SCHUNK identified workplaces and work steps, which are suitable for the conversion to an HRC application. Assessment criteria were the required programming effort, the integration effort within the entire process chain, and the controllability of the hazard analysis. At the same time, jobs with moderate-duty cycle requirements and process chains of manageable complexity were preferred. Stations were selected, where a particularly effective ergonomic and mental relief is achieved and collaboration times and interventions are initially rather low. Another key factor in the selection of jobs was the fact that the special strengths of the robots and the workers could be clearly distinguished from each other. Because if employees can continue to bring their strengths into the overall process in a secure manner, this promotes acceptance. For the pilot projects, employees were selected and included at an early stage, who have a high degree of technical affinity and curiosity.

Division of labor based on strengths

One of the use cases is the pre-assembly of gripping tools. In this application, a 7-axis lightweight KUKA LBR iiwa 7 R800 robot, on whose DIN ISO 9409-1-A-50 flange a modified SCHUNK Co-act EGP gripper is equipped with an integrated black-and-white industrial camera, removes various base housings from a universally usable transport container, and takes them to the worker. The camera detects the exact position of the basic housing, and it is transferred to the robot in the form of correction signals. Workpiece clamping is form-fit from the inside. The gripping force of the gripper with an inherently safe design is limited to a maximum of 140 N. The different sizes of the supplied workpieces are recognized, the corresponding product is classified, and the processing parameters adjusted. Other monotonous and so far purely manually executed subtasks are the screwing in of set-screws, the closing of air connections on the gripper, and the stripping of screw glue. In a second implementation phase, these steps were automated. This eliminates the worker’s least favored steps and reduces the risk of injury. Between the delivery of the blanks and the finishing of the workpiece, additional assembly tasks have to be carried out which are completed more effectively by the worker: The insertion of spring elements and sealing rings, an initial haptic functional test and the attachment of further individual components. They all require situational adaptation, which is one of the essential strengths of humans.

While the worker is mounting the gripper, the robot performs other tasks in parallel, such as part feeding or chamfering of components. © image: SCHUNK
While the worker is mounting the gripper, the robot performs other tasks in parallel, such as part feeding or chamfering of components. © image: SCHUNK

Regular safety checks, training, and acceptance analyses

For ensuring the standard compliant equipment of the workplace risk assessments and space-related safety assessments were carried out. Moreover, the acceptance by the DGUV, and the occupational safety monitoring measures during operation were examined, on whether the biometric limit values were complied with in the event of a collision. In addition, employees deployed at the HRC position receive regular training in handling the robot, and in the effectiveness of the safety measures. In addition, satisfaction is determined in regular survey rounds. It has shown that above all the first contact with the robot has a considerable influence on the acceptance of the employees. The appearance of the robot as well as the subjective feeling of safety are decisive in this respect.

As soon as the employee finishes his or her task, he or she will confirm via a tap that the robot can pick up the component. © image: SCHUNK
As soon as the employee finishes his or her task, he or she will confirm via a tap that the robot can pick up the component. © image: SCHUNK

Conclusions and recommended actions+

The experience gained from this use case has shown: Workers must be able to experience with HRC solutions right from the start that they can master the work processes, determine the processes, and rely on the function of the safety systems. Anyone, who begins with too fast robot movements, or who irritates employees with constant error messages, will suffer an uprising within a very short time. The decisive factor is that the human always sets the pace. He/she must not be driven or limited in any way by the robot. And most importantly: The area of occupational safety and the works council must be included in the considerations right from the start.

In the economic evaluation of HRC projects, SCHUNK considered other factors besides the immediate efforts and costs:

  • Transition to more flexibility in production in the form of multi-machine operation
  • Minimizing the overhead of workpiece feeding and steering, which would generate high costs in full automation of mass production
  • Increased system availability through the possibility of rapid response and courageous safe intervention, as well as by avoiding mini-stops due to terminals or small faults
  • Reduction of quality costs through process optimization
  • Robotic use for process steps that are monotonous, mentally demanding, but essential for the overall quality, such as gluing and automated testing.
  • Increased employee satisfaction and positive health effects for the workers

An additional benefit opens up by a partial automation, as it extends the sphere of activity of a worker or avoids the conversion of entire existing systems. Likewise, if increased process efficiency and quality are achieved by humans by taking over set-up, commissioning, or control tasks.

KUKA / Case Studies Collaborative Robots

Robots can apply adhesives far more accurately than human workers and are used for this task in a range of manufacturing environments. Machine manufacturer Dürr uses collaborative robots for adhesion, enabling robot and worker to operate at the same time in the same space – the robot does not have to be shut down each time the worker needs to perform a task.

Duerr AG is a leading global machine and systems builder. As a supplier of turnkey systems for automated adhesive bonding processes, Duerr develops robots cells with human-robot-collaboration (HRC) for the automotive industry. About 60 percent of sales are generated through business with automotive manufacturers and suppliers.

Identification of the task

The human operator and robot work together in final assembly without the need for physical safeguards: Sensitive LBR iiwa lightweight robots from KUKA are used for adhesive bonding of GPS antenna covers and tanks in the vehicle body.

Why HRC was selected as a solution

Duerr uses two sensitive LBR iiwa lightweight robots from KUKA in final assembly. Without a safety fence, they perform key tasks in the application of adhesive beads. This improves quality, saves time and lowers unit costs.

How is it solved (configuration of the workplace and different steps of operation)

For application of adhesive to the GPS antenna cover, the assembly worker places the workpiece into the robot gripper manually. The gripper sucks onto it and moves it to the adhesive nozzle on the application tower. The LBR iiwa slowly moves the GPS antenna cover upwards to the application nozzle. If it encounters an obstacle, it moves back a little thanks to its collision detection ability and starts the motion over from the beginning. Only after three attempts does it move back into the starting position. Otherwise, the adhesive application process starts and the adhesive bead is applied carefully while the robot executes the path. Finally, back at the starting point, the assembly worker removes the GPS antenna cover and mounts it on the vehicle.

As a supplier of turnkey systems for automated adhesive bonding processes, Duerr de-velops robot cells with sensitive KUKA lightweight robots for the automotive industry. © image: KUKA
As a supplier of turnkey systems for automated adhesive bonding processes, Duerr develops robot cells with sensitive KUKA lightweight robots for the automotive industry. © image: KUKA

Precise adhesive bead and individual fitting of the tank into the vehicle body

Here is how the system concept for automated tank gluing with the LBR iiwa works: In final assembly, the skilled worker moves the tank to a turntable with the aid of a manipulator, cleans it, moves it into the correct position and transfers it directly to the robot for further processing. To prevent the adhesive nozzle from drying out, the application nozzle is located in a seal reservoir. Following a signal, the robot moves out of the reservoir into the home position. Here, the adhesive flows into a collection container and adhesive nozzle is cleaned manually. When the starting point is reached on the stationary tank, the nozzle opens under pressure so that no air bubbles are created. The robot then applies the adhesive bead onto the tank very evenly and ensures that the bead allows for an accurate fit using sensors on the application head.

“It is definitely possible to apply an adhesive bead by hand, but the result cannot match the precision of a robot,” explains Ahlborn.

A robot-based solution can – as opposed to a linear gantry – map the three-dimensional complexity of the bead geometry. Thanks to its seventh rotating axis, an HRC-capable robot like the LBR iiwa glues in a radius of 360 degrees – without re-orienting or having to set parts down. Once the robot has completed its task, the skilled worker takes over again by fitting the tank into the vehicle body at the specified position. This complex operation requires the individual skills of the human operator. The manipulator supports the operator during ergonomically unfavorable motion sequences.

The gripper of the LBR iiwa holds the workpiece by suction and moves it to the adhesive nozzle on the application tower. © image: KUKA
The gripper of the LBR iiwa holds the workpiece by suction and moves it to the adhesive nozzle on the application tower. © image: KUKA

Evaluation of the solution of the challenge

Despite the absence of fencing and enclosures for the adhesive bonding processes, the safety requirements are high. The entire safety concept must meet stringent specifications and norms based on a risk assessment. Among other things, the robot is also positioned so that direct contact with the human operator is minimized. The robot must also switch off within milliseconds when contact is registered. The design of the adhesive bonding cells is such that the robot operates below the human worker’s head and chest area as a general rule. The application technology, consisting of the lightweight applicator and the lightweight robot, has a soft, rounded design with a large surface area so that only low forces are generated upon contact with the robot. “We deliver system technology for the new reality of human-robot collaboration from a single source,” says Ahlborn.

HRC solutions: the market of the future

HRC systems is a dominant theme in the automotive industry. “In the field of adhesive bonding, we have already sold ten systems,” reveals Ahlborn. The first system with the tank application was put into operation by the first customer in March 2016. This is why Duerr looks optimistically toward the future. “Thanks to our HRC-capable solutions using the KUKA LBR iiwa, we hope to win further orders,” states Ahlborn. Beyond this, HRC solutions for the robot-based adhesive bonding of small washers and other components are being worked out in Bietigheim-Bissingen.

Case Studies Collaborative Robots

BMW uses collaborative robots in the assembly process to lift heavy differential cases for assembly of front-axle transmissions. The operator places small and lightweight parts, such as spacers and ball bearings, into the transmission case, then presses a button to activate a ceiling-mounted robot, which fits the 5kg differential case in place.

The employees at BMW Group’s Dingolfing Plant have a new, highly responsive assistant: an LBR iiwa lightweight robot from KUKA, which primarily takes over monotonous and physically demanding tasks.

Identification of the task

Where an operator previously had to lift up to 5.5kg-heavy and not easy to reach differ-ential cases for the front-axle transmission by himself, the operator now works hand in hand with the robot assistant in a confined space - without any protective fences or additional safety equipment.

Why HRC was selected as a solution

Automation specialist KUKA has made it possible. For this human-robot collaboration (HRC) project, the experts designed a system which makes extremely efficient use of space through overhead installation and which can be integrated into the existing production line without having to redesign it.

For about a year, the specialists from the Application Engineering Team at KUKA tinkered away together with their colleagues at BMW in order to find this HRC solution. First implemented as a feasibility study at KUKA in Augsburg, it was then tested in operation at the plant in Dingolfing. Since June 2016, the system has been in regular production operation. Where BMW employees previously had to lift and fit cumbersome differential cases weighing up to 5.5 kilograms with millimeter precision when assembling front-axle transmissions, the robot now performs this ergonomically challenging work.

How is it solved (configuration of the workplace and different steps of operation)

The special challenge when designing the system was the limited space available for the HRC design. It had to fit into the production line for the assembly of front-axle transmissions for various vehicle models with all-wheel drive. “In contrast to a classic full automation solution, for which we would entirely redesign and then build the system, the layout here was determined by the space available,” explains Juergen Seifert, Project Manager for Sensitive Robotics at KUKA. Between the upstream and downstream stations, where further KUKA robots operate fully automatically, only the space occupied by the manual workstation was left. “That’s why we could not use a standard product like the KUKAflexFELLOW, but rather had to find another alternative for this area.”

The system had to fit into the space available in the production line. To achieve this, KUKA built a gallows-shaped steel structure on which a sensitive lightweight robot is mounted. The LBR iiwa is able to work from an overhead position and thus takes up less space. © image: KUKA

The solution developed by KUKA: a sleek, gallows-shaped steel structure on which a sensitive lightweight robot is mounted. In this way, the LBR iiwa is able to work from an inverted position. That saves space. And since the LBR iiwa has joint torque sensors in each of its seven axes, no external sensors are required. This feature, combined with the robot’s systematically lightweight construction, enables work from an inverted position. Beyond this, the gripper, as the end effector of the robot, has been equipped with an edge-free HRC case with a rounded design so that the gripper too is HRC-compatible and the operator is protected from injury at all times. The compact control cabinet too found a place in the existing production line, thus providing the interface to the system controller.

© image: KUKA
The human operator and the robot collaborate to install differential cases for front-axle transmissions, © image: KUKA

Here, the human operator and the robot now collaborate to install the differential cases for the front-axle transmissions – in less than 30 seconds. The components are fed to the system automatically along a conveyor with friction rollers and prepared by the operator, who places all of the small and lightweight parts, such as spacers and ball bearings, into the cast aluminum transmission case and the cover. The operator then presses a button to activate the robot, which carefully fits the heavy differential case in place. Here, the robot’s responsive properties play a key role. After all, the sensitive tooth flanks must not be damaged by impacts when meshing the gears. The operator then fastens the cover to the transmission.

Evaluation of the solution of the challenge

Within differential production at the BMW Group plant in Dingolfing, this is the first workstation at which the human operator and the robot are able to work together in the same workspace without any safety fencing or additional safety equipment. Juergen Seifert, KUKA Project Manager, is sure that this is just the beginning:“We will see significantly more applications of this kind in the automotive industry in the future,” notes Seifert, who credits technological advances for making this possible. As an example, this technology enables companies to adapt to the needs of an aging workforce. This is an important aspect as the working lifetime of employees increases. And it allows ergonomically unfavorable work steps to be transferred to the mechanical assistant. The advantage: the operators can carry out their jobs for longer.

“We are able to significantly improve the quality of jobs through HRC solutions,” says KUKA expert Seifert.

In Seifert’s opinion, the future requirements placed on industrial manufacturing will also make a combination of manual and automated activities essential. In times of an increasing number of variants, optimally adapting production to provide the capacity required at any particular time is a clear competitive advantage. This can be achieved, for example, thanks to flexible HRC units.

At the BMW Group’s Dingolfing Plant, the system is running smoothly. From programming to commissioning and safety inspection, KUKA performed all of the relevant steps.

IFR Press Releases

The new World Robotics Report shows that a new record high of 381,000 units were shipped globally in 2017 – an increase of 30 percent compared to the previous year. This means that the annual sales volume of industrial robots increased by 114 percent over the last five years (2013-2017). The sales value increased by 21 percent compared to 2016 to a new peak of US$16.2 billion in 2017.

“Industrial robots are a crucial part of the progress of manufacturing industry,” says Junji Tsuda, President of the International Federation of Robotics. “Robots evolve with many cutting-edge technologies. They are vision recognition, skill learning, failure prediction utilizing AI, new concept of man-machine-collaboration plus easy programming and so on. They will help improve productivity of manufacturing and expand the field of robot application. The IFR outlook shows that in 2021 the annual number of robots supplied to factories around the world will reach about 630,000 units.”

Top five markets in the world

There are five major markets representing 73 percent of the total sales volume in 2017: China, Japan, South Korea, the United States and Germany.

China has significantly expanded its leading position with the strongest demand and a market share of 36 percent of the total supply in 2017. With sales of about 138,000 industrial robots (2016-2017: +59 percent) China´s sales volume was higher than the total sales volume of Europe and the Americas combined (112,400 units). Foreign robot suppliers increased their sales by 72 percent to 103,200 units, including robots produced locally by international robot suppliers in China. This is the first time that foreign robot suppliers have a higher growth rate than the local manufacturers. The market share of the Chinese robot suppliers decreased from 31 percent in 2016 to 25 percent in 2017.

Japan´s manufacturers delivered 56 percent of the global supply in 2017. This makes Japan the world´s number one industrial robot manufacturer. The export rate increased by 45 percent (2016-2017). North America, China, the Republic of Korea, and Europe were target export destinations. Robot sales in Japan increased by 18 percent to 45,566 units, representing the second highest value ever witnessed for this country. A higher value was only recorded in the year 2000 with 46,986 units.

The manufacturing industry of the Republic of Korea has by far the highest robot density in the world – more than 8 times the global average amount. But in 2017, robot supplies decreased by 4 percent to 39,732 units. The main driver of this development was the electrical/electronics industry that reduced robot installations by 18 percent in 2017. The year before, industrial robot installations peaked at 41,373 units.

Robot installations in the United States continued to increase to a new peak in 2017 – for the seventh year in a row - and reached 33,192 units. This is 6 percent higher than in 2016. Since 2010, the driver of the growth in all manufacturing industries in the U.S. has been the ongoing trend to automate production in order to strengthen the U.S. industries in both domestic and global markets.

Germany is the fifth largest robot market in the world and number one in Europe. In 2017, the number of robots sold increased by 7 percent to 21,404 units - a new all-time record - compared to 2016 (20,074 units). Between 2014 and 2016, annual sales of industrial robots stagnated at around 20,000 units.

Robot use by industry worldwide

The automotive industry remains the largest adopter of robots globally with a share of 33 percent of the total supply in 2017 - sales increased by 22 percent. The manufacturing of passenger cars has become increasingly complex over the past ten years: a substantial proportion of the production processes nowadays require automation solutions using robots. Manufacturers of hybrid and electric cars are experiencing stronger demand for a wider variety of car models just like the traditional car manufacturers. Furthermore, the challenge of meeting 2030 climate targets will finally require a larger proportion of new cars to be low- and zero-emission vehicles.

In the future, automotive manufacturers will also invest in collaborative applications for final assembly and finishing tasks. Second tier automotive part suppliers, a large number of which are SMEs, are slower to automate fully but we can expect this to change as robots become smaller, more adaptable, easier to program, and less capital-intensive.

The electrical/electronics industry has been catching up with the auto industry: Sales increased by 33 percent to a new peak of 121,300 units - accounting for a share of 32 percent of the total supply in 2017. The rising demand for electronic products and the increasing need for batteries, chips, and displays were driving factors for the boost in sales. The need to automate production increases demand: robots can handle very small parts at high speeds, with very high degrees of precision, enabling electronics manufacturers to ensure quality whilst optimising production costs. The expanding range of smart end-effectors and vision technologies extends the range of tasks that robots can perform in the manufacture of electronic products.

The metal industry (including industrial machinery, metal products and basic metals industries) is on an upswing. Share of total supply reached 10 percent with an exceptional sales growth of 55 percent in 2017. Analysts predict an overall growth in demand in 2018 for metals, with ongoing high demand for the cobalt and lithium used in electric car batteries. Large metal and metal product companies are implementing Industry 4.0 automation strategies, including robotics, to reap the benefits of economies of scale and to be able to respond quickly to changes in demand.

Automation degree by robot density

85 robot units per 10,000 employees is the new average of global robot density in the manufacturing industries (2016: 74 units). By regions, the average robot density in Europe is 106 units, in the Americas 91, and in Asia 75 units.


see below and robot pictures at newsroom

Press contact

Carsten Heer
Tel. +49 (0) 40 822 44 284
Email: [email protected]

IFR Press Releases

Sales value of service robots for professional use increased by 39 percent to US$6.6 billion. The total number sold in this robot category rose by 85 percent (2017). Logistic systems show the strongest demand, accounting for 63 percent of the total units and 36 percent of the total sales (in value) of professional service robots. Prospects for service robots remain positive, as it is also a primary field for start-ups.

“In terms of value, the sales forecast 2019-2021 indicates a cumulative volume of around US$46 billion for the professional service segment”, says Gudrun Litzenberger, General Secretary of the IFR. “Robots for logistics, medical and field services are the most significant contributors.”

Service robots for PROFESSIONAL USE – market overview

69,000 logistic systems were installed in 2017 – this is 162 percent more than the number of units in 2016 (26,300). 6,700 automated guided vehicles in manufacturing environments and 62,200 in non-manufacturing environments are building up this increase compared to automated guided vehicles sales numbers in 2016. The value of logistic systems sales is estimated at about US$2.4 billion – an increase of 138 percent compared with 2016.

Medical robots are also well-established service robots with a considerable growth potential. The total value of sales of medical robots increased to US$1.9 billion, accounting for 29 percent of the total sales value of the professional service robots in 2017. Most important applications are robot assisted surgery or therapy and rehabilitation robots which assist people who have a disability with necessary activities or they provide therapy to people with the aim of improving their physical or cognitive functions.

The sales value of field robots, which mostly comprise milking robots, account for about 15 percent of the total value of professional service robot sales. Their share slightly decreased by 2 percent to US$966 million. The total number of field robots sold in 2017 was 6,375 units, accounting for a share of 6 percent of the total unit supply. A total of almost 5,400 milking robots were sold in 2017 compared to almost 5,300 units in 2016, representing a 2 percent increase. In 2016, sales decreased due to financial problems of the dairy farmers. The market is still showing the effects of this in 2017. Agricultural robots (broad acre farming for crop, vegetable and fruit cultivation, harvesting) are getting grounded in the market. Sales increased from 190 units in 2016 to 520 units in 2017.

Service robots for PERSONAL and DOMESTIC USE – market overview

At the same time, the market for personal service robots, which assist or entertain humans in their everyday lives, is progressing rapidly. Value was up by 27 percent to US$2.1 billion. The total number increased by 25 percent to about 8.5 million units in 2017. It is estimated that nearly 6.1 million robots were sold for domestic tasks, including vacuum cleaning, lawn-mowing, window cleaning and other types – an impressive 31 percent increase compared to 2016. The actual number might, however, be significantly higher, as the IFR survey is far from having full coverage in this domain. The value was about US$1.6 billion. Compared to 2016, this represents an increase of 30 percent.

“Robotics in personal and domestic applications has experienced strong global growth,” says Martin Haegele, Chairman of the IFR Service Robot Group and longtime author of the report. “Floor cleaning robots, robo-mowers and robots for edutainment (the latter increasingly referred to as social robots), have increasingly become part of our lives. Future product visions point to domestic robots of higher sophistication, capability and value, such as assistive robots for supporting the elderly, for helping out with household chores and for entertainment.”

Service robot manufacturers by regions

European service robot manufacturers play an important role in the global market: about 300 out of the meanwhile more than 700 registered companies supplying service robots come from Europe. North America ranks second with about 250 manufacturers and Asia third with about 130. Furthermore, about 30 percent of the service robot suppliers are considered as start-ups with a maximum age of five years therefore indicating the dynamics of this emerging and progressive segment in robotics.


see below and robot pictures at newsroom

Press contact

Carsten Heer
Tel. +49 (0) 40 822 44 284
Email: [email protected]

IFR Press Releases

Today, World Robotics 2018 Industrial Robots and Service Robots are published. Both reports show the successful development of the robot market in the past years as well as promising forecasts. A new record high of 381,000 units of robots were shipped globally in 2017 – an increase of 30 percent compared to the previous year. This means that the annual sales volume of industrial robots increased by 114 percent over the last five years (2013-2017).

Dear readers,

Industrial robots are a crucial part of the progress in manufacturing industry. Robots continue to evolve thanks to an array of cutting-edge technologies, such as vision recognition, skill learning, failure prediction utilizing AI, new concept of man-machine-collaboration plus easy programming and so on. These developments will help improve productivity of manufacturing and expand the field of robot application. The IFR outlook shows that in 2021 the annual number of robots supplied to factories around the world will reach about 625,000 units.

Service robots have successfully entered our daily lives at home, in shops, in hospitals, in barns and fields, in museums and other public areas. Prospects for service robots remain positive, as it is also a primary field for start-ups.

This week, we are participating at the World Robot Summit in Tokyo, a challenge and an expo. Under the theme “Robotics for Happiness”, it brings together Robot Excellence from around the world, to promote a world where robots and humans successfully live and work together. It strives towards achieving a society where humans and robots cooperate and coexist.

Robots have certainly transformed industrial manufacturing. And without a doubt, the acceptance of robots as assistants in factories and in our daily lives is also on the rise.

Best wishes,

Junji Tsuda

Case Studies Collaborative Robots

SHAD, the leading European manufacturer of top and side cargo cases for motorcycles installs its first UR5 from Universal Robots in its factory in Mollet del Valles (Catalonia, Spain). The collaborative robot arm has streamlined production, enabling the cases to be assembled in half the time, while also enhancing the work environment for employees.

The Spanish company NADSL, best known for its SHAD brand of top and side cargo cases for motorcycles, manufactures original equipment (seats and cases) for the world’s leading motorbike manufacturers. The company chose Universal Robot’s collaborative robots to optimize its production processes thanks to their ease-of-use and the fact that they can be operated without the need for safety barriers. The UR5 six-axis robot works side by side with plant personnel in a shared environment, where it frees them up from having to do the more repetitive tasks such as screwing in screws on the cases, thereby enhancing production cycle time and quality, as well as helping to improve the work area.

The NADSL factory in Mollet del Valles, Barcelona, has 40 years experience in manufacturing original equipment for motorbikes, mainly seats and top and side cases for OEMs such as Yamaha, Honda, Suzuki, Piaggio, Peugeot and BMW. The company also manufactures and markets cases and seats under its own SHAD brand and has been expanding its product catalogue in recent years to include bags for motorbikes, top cases for quadbikes, custom-made seat backs for scooters and communication accessories such as Bluetooth hands free kits and holder mounts for smartphones.

UR5 six-axis robot works side by side with plant personnel
UR5 six-axis robot works side by side with plant personnel

Achieving betterment through technology is one of the company’s main challenges, not only in the design of new products but also in their production. Shad had considered previously the possibility of installing a robot, but due to their customary short production runs, the cost of a traditional industrial robot could not be justified. Besides the issue of the return on investment, they were also looking for a solution that could operate alongside its production workers in limited spaces. The UR5, Universal Robots’ 18kg model with 5kg payload, fulfilled these requirements. Furthermore it was possible for the company to install it in practically the same amount of space required to manually assemble the cases and with the same initial cost investment as that of a normal robot, but through a much simpler installation process that helped reduce to a minimum the costs of setting it up.

The installation of the robot was done by its operators in two stages: in the first stage tests were done using the robot with a pneumatic screwdriver alongside the operator who, at the same time, was screwing in the same parts manually. This stage served as a comparison between the automated and the manual processes and allowed the production line managers to define the best way to configure the robot in order to streamline the collaborative process between robot and operator.

In the second stage, the UR5 was installed so that the operator could carry out the manual preparation (such as place the parts in their line position) whilst the robot performed the more repetitive tasks of picking up the screws and driving them into the parts. It was therefore possible to optimize the entire task, and assemble parts in half the time.

“The installation of the robot represents a technological improvement in our production that has enhanced the quality of the product and helped us reduce costs at the same time”, comments Joan Planas, engineer at NADSL.

Universal Robots’ official distributor in Catalonia, Vicosystems, supplied the robot to NADSL, and SHAD are very satisfied with the utilization of the robot which has improved working conditions for the production personnel thanks to the robot taking on the most repetitive tasks such as driving in screws. The development of the programming was done in less than two weeks and in one or two days the rest of the production personnel were able to carry out maintenance tasks and adjustments in the configuration (such as modifying point positions, programming timers, etc). The UR robot also has a guided system for configuring the pass points, the Teach mode, allowing operators to simply grab the robot arm to “teach” the robot the desired moves. Although as Joan Planas explains: “For the operators it was very easy to familiarize themselves with robot’s graphic interface”.

The Universal Robots robotic arm is the first collaborative robot to be installed in the factory in Catalonia, but due to the positive results so far, Shad is looking to install a second robot in other areas of its production plant.

Staubli Robotics / Case Studies Collaborative Robots

Stäubli Electrical Connectors uses a mobile industrial robot with an automatic tool changing system to tend multiple machines. The robot navigates between machines, selects the appropriate tool and completes a task, such as loading a rotary table for the manufacturing of pneumatic couplings, and moves on. The robot stops automatically if a human approaches.

Mobile robot systems are a popular topic of discussion but rarely found in practice, and they are high on the wish list of many industrial companies. Meanwhile, Stäubli Electrical Connectors is already using them to great effect. Senior management there is delighted by the flexibility that mobile robot assistants bring to the assembly line. Stäubli Electrical Connectors is one of the world’s leading manufacturers of electrical connectors for all industrial sectors.

The company not only sets the benchmark in terms of product quality but also leads the way in innovative production technologies. In the manufacture of their broad-based product range, the Swiss-based specialists favor hybrid assembly systems that combine fully automated and manual workstations. The only downside to this strategy is that, if an operator is absent due to illness, the complete line comes to a standstill. In addition, unmanned night shifts are not possible.

HelMo references itself at the work station
HelMo references itself at the work station, © image: Stäubli

The company now has the optimal solution for such scenarios: the HelMo mobile robot system from Stäubli Robotics. Once trained, HelMo can handle almost any manual job on the various assembly lines. This production assistant navigates to its own workplace, decelerates or stops when human colleagues come too close, and then continues its journey as before.

More of a flexible production assistant than a robot

As soon as HelMo arrives at its workplace, it spends a few minutes prepping itself for the task in hand. The robot positions itself precisely within a tenth of a millimeter by referencing three permanent orientation points at the workstation. HelMo then connects itself to the fixed supply sockets for electricity and compressed air by means of a multi-coupling – also from Stäubli of course – and starts its shift. To enable HelMo to operate flexibly, its designers equipped it with an automatic tool change system from Stäubli Connectors. So, today it could be the placement of connector housings and contact pins, whereas tomorrow it might be some other stage in the assembly process, which HelMo will perform if called upon. In the factory at Allschwil, HelMo is regarded less as a robot and more as an assistant who is flexible enough to help out where needed.

HelMo connects itself to the work station
HelMo connects itself to the work station, © image: Stäubli

The intention is not to replace human labor with mobile robots – that would make no sense from either a production or an economic perspective – but to deploy HelMo as a flexible stand-in and thereby increase the availability of hybrid assembly lines or cope with peak demand. Illness-related or other unforeseen absences among the human workforce are no longer a cause for consternation at Allschwil. Thanks to HelMo, the delivery capability of the company has been significantly optimized.

IFR Press Releases

The General Secretary of the International Federation of Robotics, Gudrun Litzenberger, has received the Joseph F. Engelberger Robotics Award. The jury honored her achievements in robotics with the world's most important industry award in the "Leadership" category.

As head of the IFR Statistical Department, Litzenberger advanced the World Robotics Statistics and has been working for more than a decade to improve our understanding of the global robotics market. “Gudrun Litzenberger has spent much of her career helping our industry better understand the size and scope of the global robotics market,” said Jeff Burnstein, RIA president. “Her work has established the IFR as the leading source of global robotics statistics during an era when the interest in robotics is growing exponentially. Furthermore, Gudrun has been a tireless advocate for our industry throughout the world.”

Ambassador of Robotics

“The Engelberger Robotics Award is a success for my entire team,” says Gudrun Litzenberger, General Secretary of the International Federation of Robotics. “We all share a great passion for robotics. We are very proud to know that organizations around the world and governments use our statistics. IFR’s valid data are very important because they provide clear insights into the use of robots all over the world and their effects on the economy.“Gudrun Litzenberger has been working for the German Engineering Federation (VDMA) since 1986. In 2002, she transferred to the VDMA Robotics and Automation Association, where she was responsible for statistics. Litzenberger then took over the responsibility for World Robotics Statistics in 2003 and since 2005 has been in charge of the annual IFR World Robotics Report. Today, this study is considered the most important source for global robot statistics and covers all market-relevant activities of industrial and service robots. Gudrun Litzenberger has been General Secretary of the IFR since 2008. The International Federation of Robotics represents more than 50 manufacturers of industrial robots and national robot associations from over twenty countries and was founded in 1987 as a non-profit organization.

copyright: Michael Plettenberg

copyright: Thomas Plettenberg

About the Joseph F. Engelberger Robotics Award

The award is named for Joseph F. Engelberger, known throughout the world as the ”father of robotics.” Engelberger was founder and president of Unimation, Inc., the world’s first industrial robot manufacturer. The Engelberger Robotics awards are presented to individuals for excellence in technology development, application, education and leadership in the robotics industry. Each winner receives a $5,000 honorarium and commemorative medallion with the inscription, “Contributing to the advancement of the science of robotics in the service of mankind.”


Please download below.

Press contact

Carsten Heer
phone +49 (0) 40 822 44 284
E-Mail: [email protected]

IFR Press Releases

The 14th International IERA Award for Robotics and Automation has three winners on the top of the podium this year:

  • Perception Robotics (USA) wins with the “Industrial Self-Cleaning Gecko Gripper”, a Gecko-style gripping solution that uses NASA technology for industrial automation.
  • KUKA Deutschland wins with “LBR Med”, a collaborative robot assistant for medicine & research as well as new applications.
  • Lely International (Netherlands) wins with the “Discovery 120 Collector”, a barn floor cleaning robot that cleans solid floors in the dairy industry

“The close cooperation between research and industry is very important for the robotics industry,” says Junji Tsuda, President of the International Federation of Robotics. “Based on modern scientific research, world-class products are being developed - this has been demonstrated by all three winners.”

“This year a number of excellent applications competed for the IERA Award,” says Dominik Boesl of IEEE-RAS. “Our winners in 2018 offer excellent technological innovations in various industries. Therefore, this year the jury decided to award first place to three winners.”

Perception Robotics (USA): Gecko Gripper

The technology underlying the gecko gripper is based on the model of the gecko, which can climb on smooth surfaces. The reptile uses physical forces of attraction between foot and surface (van der Waals forces). Based on the work of NASA (JPL) and Stanford University, Perception Robotics has developed a gripping solution for the manufacturing industry using this natural model in collaboration with NASA-JPL. In contact with smooth and rough materials, millions of tiny stalks on the robot arm produce a highly adhesive effect, with which, for example, sheet metal or glass pieces can be moved. The gecko gripper arm was deployed in sheet metal processing in 2017 - Perception Robotics sees an important future market in the manufacture of solar panels.

KUKA (Germany): LBR Med, lightweight robot

The LBR Med Robot Assistant from Kuka Deutschland supports a variety of tasks in medical research and practice and works in close proximity to humans. In laboratories, clinics or operating theatres, the lightweight robot takes over various tasks depending on the tool and program - for example, during medical interventions, treatments or scientific test procedures. The LBR Med has seven axes and particularly sensitive sensors that are suitable for human-robot collaboration. The robot component can be integrated into medical devices worldwide and has been tested and certified to international safety and quality standards. LBR Med, for example, has biocompatible and corrosion-resistant surfaces and, with internal connections, meets the hygiene standards in medical practices, clinics or operating theatres.

Lely International (The Netherlands): Barn floor cleaning robot

The Discovery 120 Collector navigates a programmed route through the barn and is controlled on its way by built-in sensors. The robot vacuums up the manure on solid walkways. The machine can spray water at the front and the back for dilution and cleaning. The in-built vacuum pump sucks the manure inside - once the tank is full, the Discovery drives to the dumping location. Here, the cleaning robot empties the tank and refills the water bags before returning to the charging station. Lely launched the Discovery 2017 in several European countries as well as the USA. In the future, additional countries will be added.


Please download below.

Press contact

Carsten Heer
phone +49 (0) 40 822 44 284
E-Mail: [email protected]

IFR Press Releases

Global sales of industrial robots reached the new record of 387,000 units in 2017. That is an increase of 31 percent compared to the previous year (2016: 294,300 units). China saw the largest growth in demand for industrial robots, up 58%. Sales in the USA increased by 6% - in Germany by 8% compared to the previous year. These are the initial findings of the World Robotics Report 2018, published by the International Federation of Robotics (IFR).

Broken down by industry, the automotive industry continues to lead global demand for industrial robots: In 2017, around 125,500 units were sold in this segment - equivalent to growth of 21 percent. The strongest growth sectors in 2017 were the metal industry (+55 percent), the electrical/electronics industry (+33 percent) and the food industry (+19 percent).

In terms of sales volume, Asia has the strongest individual markets: China installed around 138,000 industrial robots in 2017, followed by Japan with around 46,000 units and South Korea with around 40,000 units. In the Americas, the USA is the largest single market with around 33,000 industrial robots sold, and in Europe it is Germany with around 22,000 units sold.

“The growth of industrial robots continues at an impressive pace worldwide,” says Junji Tsuda, President of the International Federation of Robotics. “Key trends such as digitalisation, simplification and human-robot collaboration will certainly shape the future and drive forward rapid development.”

In the course of digitalisation, real production is becoming increasingly connected with the virtual data world, opening up completely new possibilities for analysis - right through to machine learning. Robots will acquire new skills through learning processes. At the same time, the industry is working to simplify the handling of robots. In the future industrial robots should be easier and faster to program using intuitive procedures. Such a technology is not only attractive to established users, but also to small and medium-sized companies, for example, companies who can use it to introduce automation without the need for highly experienced or expert personnel. This development also paves the way for the third major robotics trend: collaboration between humans and robots without protective barriers offers new approaches to new flexible production processes. In the future human-robot collaboration will support the flexible production of small quantities with high complexity.

Photos + Graphics

Please find photos and graphics for download below.

Press contact

Carsten Heer
phone +49 (0) 40 822 44 284
E-Mail: [email protected]

IFR Press Releases

Nearly 70 percent of employees believe that robotics and automation offer the opportunity to qualify for higher skilled work. This is the result of a worldwide automatica survey of 7,000 employees in seven countries. The technological change calls for targeted training and further education for employees. More than 3 million industrial robots will be in use in factories around the world by 2020. This means that the operational stock will more than double within seven years (2014-2020).

According to the International Federation of Robotics, more than 3 million industrial robots will be in use in factories around the world by 2020. This means that the operational stock will more than double within seven years (2014-2020).

„IT like robotics process automation is by far the biggest contributor in transforming people’s jobs,” comments Junji Tsuda, president of the International Federation of Robotics. “Companies and governments must collaborate to ensure workers have the skills that the technological change requires.”

Singapore invests in SkillsFuture initiative

As far as training is concerned, Singapore is one of the most advanced countries with its SkillsFuture initiative. Employers in the city-state are asked to spell out the changes, industry by industry, that they expect to happen over the next three to five years, and to identify the skills they will need. Their answers are used to create “industry transformation maps” designed to guide individuals on where to head.

Since January 2016 every Singaporean above the age of 25 has been given $345 credit that can be freely used to pay for any training courses provided by 500 approved providers, including universities and MOOCs.

Press contact

Carsten Heer, [email protected]

These are exciting times in robotics. Robot adoption has grown at a rapid pace over the past three years and we expect this to continue. The IFR forecasts 15% average annual growth in industrial robots and up to 25% growth in professional service robots by 2020.

Dear readers,

We see a number of trends that will fuel a broader adoption of robots across new geographies, industries and applications. For example, collaborative robots that can work alongside humans will start to make their mark in a wide range of industries such as manufacturing and logistics. The application of collaborative and service robots in healthcare holds great promise for enabling advanced economies to provide quality care to rapidly growing ageing populations, supporting healthcare workers in tedious, back-breaking tasks and enabling them to focus on patient care.

Many of the recent developments in robotics are driven by advances in artificial intelligence (AI). For example, AI enables robots to sense and respond to their environment. This increases the range of functions they can perform, from navigating their way around warehouse floors, to sorting and handling objects that are uneven, fragile or jumbled together. Picking up a strawberry is an easy task for humans, but a remarkably difficult one for a robot. Most collaborative robots today work in sequence with humans, each performing separate tasks. Developments in AI mean we can expect robots to perform increasingly effectively as human assistants, not only understanding and answering questions as they do today, but also acting on voice commands and gestures, and even anticipating a worker’s next move in order to remove an obstacle from her path.

In all of these applications, human safety is paramount, which means many of these AI innovations will take longer to bring to market than AI software applications which can be tested and adapted in a ‘live’ setting. Meanwhile, governments, educational institutes and companies must work to ensure that today’s and tomorrow’s workers are equipped with the knowledge and skills to benefit from advances in AI and robotics.

Our new positioning paper, ‘Robots and the Workplace of the Future’ gives more detail on how robots and automation are changing the nature of work in manufacturing, logistics and healthcare.

Best wishes,

Junji Tsuda


The Robotic Industries Association (RIA) announced the winners of the 2018 Engelberger Robotics Awards, the world's most prestigious robotics honor. The 2018 awards will be presented to Gudrun Litzenberger, the General Secretary of the International Federation of Robotics (IFR), and Esben Østergaard, CTO and Cofounder of Universal Robots.

Litzenberger and Østergaard will be honored at a special ceremony on June 20 in conjunction with Automatica and the International Symposium on Robotics, held June 19-22 in Munich, Germany. The award is named for Joseph F. Engelberger, known throughout the world as the ”father of robotics.” Engelberger was founder and president of Unimation, Inc., the world’s first industrial robot manufacturer. The Engelberger Robotics awards are presented to individuals for excellence in technology development, application, education and leadership in the robotics industry. Each winner receives a $5,000 honorarium and commemorative medallion with the inscription, “Contributing to the advancement of the science of robotics in the service of mankind.”

The awards recognize outstanding individuals from all over the world. Since the award’s inception in 1977, it has been bestowed upon 126 robotics leaders from 17 different nations. This year the awards will be presented in the categories of leadership and technology.

The Engelberger Robotics Award for Leadership is awarded to Gudrun Litzenberger.

“Gudrun Litzenberger has spent much of her career helping our industry better understand the size and scope of the global robotics market,” said Jeff Burnstein, RIA president. “Her work has established the IFR as the leading source of global robotics statistics during an era when the interest in robotics is growing exponentially. Furthermore, Gudrun has been a tireless advocate for our industry throughout the world.”

The Engelberger Robotics Award for Technology is awarded to Esben Østergaard.

“Esben Østergaard’s work in the field of collaborative robot applications has allowed robots to enter previously unthinkable sectors in just about every industry,” added Burnstein. “His emphasis on robots that work side by side with people has created enormous interest among many small and medium sized companies who never even considered robots before. In a world that is increasingly characterized by people and robots working together, Esben’s pioneering technology advances play a pivotal role.”

2018 Engelberger Award Winners

Gudrun Litzenberger joined the German Mechanical Engineering Industry Association (VDMA) in 1986. In 2002 she transitioned to the VDMA Robotics+Automation Association where she took responsibility for statistics in the fields of robotics, assembly technology and machine vision. After the foundation of the IFR Statistical Department in 2003, Litzenberger assumed responsibility for the World Robotics Statistics from the United Nations Economic Commission for Europe (UNECE) and compiled the annual study World Robotics from 2005. Over the years, World Robotics has developed into the international benchmark for global robot statistics covering all relevant market related activities of industrial and service robots. In 2008, Litzenberger was appointed General Secretary of the IFR. The IFR connects the world of robotics around the globe and now represents over fifty members from more than twenty countries.

Esben H. Østergaard is Chief Technology Officer at Universal Robots, one of the inventors behind the UR cobots, and is responsible for the enhancement of existing UR cobots and the development of new products. During his years as researcher and assistant professor in robotics and user interfaces at University of Southern Denmark, he created the foundation for a reinvention of the industrial robot. In 2005, this led him to found Universal Robots together with two of his research colleagues. Besides his work as CTO Østergaard is participating in national research projects and he is also an external examiner at several universities in Denmark. Earlier in his career, he worked as a research scientist at USC Robotics Labs in Southern California and also at AIST in Tokyo as a visiting researcher.

2018 Joseph F. Engelberger Robotics Award Dinner

The Engelberger Awards Ceremony will be held at 6:30pm on Wednesday, June 20, 2018 at the Hofbräuhaus in Munich, Germany as part of the International Symposium on Robotics. Tickets can be purchased for the event by visiting the RIA website’s Engelberger section.

The 50th installment of the globally leading robotics conference “International Symposium on Robotics” (ISR 2018) will be held in June 20-21, 2018 within the framework of automatica 2018.

Not only the oldest but also the world’s leading robotics conference: the International Symposium on Robotics (ISR). Having been a part of automatica since 2006, the 50th anniversary of this event will be celebrated at automatica 2018. More than 100 presentations will address the major research and development challenges, while specific topics such as components and technologies, robots in new markets and applications, industrial/service robots, and the workplace of the future will also be discussed in great detail.

Noteworthy are the high-caliber keynotes by Prof. Oussama Khatib (Stanford University, US), Prof. Sami Haddadin (University of Hannover), Prof. Torsten Kroeger (KIT Karlsruhe), Prof. Jianwei Zhang (University of Hamburg), Dr. Michael Zuern (Daimler AG) and Dr. Sebastian Trimpe (Max Planck Institute Stuttgart), which round off the scientific program.

This time, there will also be the first panel discussion under the title ”On the Future of Robotics” at the end of the first day of the conference.

The conference’s highlights include the Joseph F. Engelberger Award ceremony, an award that honors value-added ideas and world-class products in the robotics domain and that is considered the most prestigious industry award worldwide. The award ceremony will be held on June 20, 2018 during a gala dinner. Another highlight: The IERA Special Session (Innovation and Entrepreneurship in Robotics and Automation) along with the associated IERA Award that is also presented within the framework of a gala dinner.

The conference is hosted on the grounds of Messe Muenchen - hence creating an ideal opportunity to visit both events: the ISR robotics conference and automatica 2018.

Highlights from the conference program: Keynote-Speaker

June 20, 2018

  • Prof. Oussama Khatib, Stanford University: “The Age of Human-Robot Collaboration”
  • Prof. Sami Haddadin, University of Hannover: “Human Centered Robotics”
  • Prof. Torsten Kroeger, Karlsruhe Institute of Technology (KIT): “Transfer Learning”

June 21, 2018

  • Prof. Jianwei Zhang, University of Hamburg: “China’s Robotics Research”
  • Dr. Michael Zuern, Senior Manager Process Engineering Joining and Assembly Technology, Daimler AG: “Robot Farming—The Future of Industrial Robotics at Daimler”
  • Dr. Sebastian Trimpe, Max-Planck-Institute for Intelligent Systems, Stuttgart: “Machine Learning for Dynamic Systems”

Additional information and program is available under www.isr2018.org.

IFR Press Releases

At 309 units per 10,000 employees, robot density in German manufacturing industry is the third highest worldwide. At the same time, the number of people employed in Germany reached 44 million in 2017, the highest figure since reunification. The rapid spread of industrial robots hasn’t made a dent in employment figures: today, new tasks have been created for the workforce alongside once performed by machines.

These are the results of the latest study by the Centre for European Economic Research (ZEW) on behalf of the German Federal Ministry for Education and Research (BMBF). “The results of the ZEW study on the labour market confirm what we’re observing in leading industrial nations across the world,” comments Junji Tsuda, president of the International Federation of Robotics. “The modernisation of production shifts hazardous, unhealthy and monotonous work to the machines. In the vast majority of cases, only certain activities of a job are automated and not the entire spectrum of an employee´s work.” However, if jobs are cut – the ZEW reports that 5% of employees were replaced within five years – these losses are compensated for by new jobs overall.

In Germany, the rise in the use of machines has allowed employment to grow by 1%. This development looks set to continue in future: based on details from companies surveyed, the ZEW estimates that further automation and digitalisation in industry will generate a 1.8% rise in employment by 2021.

This development tallies with experience from the 1990s onwards with the computer boom. The large-scale use of IT in companies did render traditional processing jobs superfluous. But according to calculations by the ZEW, from 1995 to 2011 employment rose by just under 0.2% per year.

The London School of Economics (LSE) recently published a study entitled Robots at Work on the use of industrial robots in 17 developed economies between 1993 and 2007. LSE head of research, Guy Michaels, summarised the key results at a Messe Muenchen press conference on automatica 2018: “Productivity has improved by around 15% due to industrial robots. At the same time, the proportion of low-skilled labour dropped and pay increased slightly. Industrial robots don’t have any significant impact on the number of employees overall,” commented Guy Michaels.

About the Impact of Robots on Productivity, Employment and Jobs

Please find the IFR position paper here.

Centre for European Economic Research (ZEW) survey

Please find the ZEW survey here.

Wittmann / Case Studies Industrial

With the help of robots from WITTMANN BATTENFELD, INC., the US branch of the WITTMANN Group, Intertech Medical wins first place for MAPP Innovations Award 2017.

In August 2017, MAPP, the Manufacturers Association for Plastic Processors, awarded Intertech Medical first place for their 2017 Innovations Award for their work cell automating quality inspection, degating, and packaging. Intertech Medical, located in Denver, Colorado, is the region’s premier full service injection molder and contract manufacturer, specializing in medical devices.

The changes began after Intertech had been molding a medical part with complex geometry and features that was difficult to trace defects on using conventional inspection methods and sampling. With the part’s critical application and an expectation of zero defects, this was particularly problematic. After three customer complaints within six months, it was clear to both Intertech and their customer that a solution was needed.

To solve the problem, Intertech designed and built a machine-side, automated work-cell that utilized integrated process control and quality control to get to zero defects. The solution primarily centered on integrated process control, automated quality inspection, and the reduction of bioburden from part handling and packaging. Rather than just adding more operators and increasing the number of times quality inspections, Intertech took a leap forward in their automation and inspection technology and were able to achieve the best results possible.

Successful WITTMANN automation

Intertech already had robots, but the supplier they had been using was limiting their ability to program and customize their process. Knowing that WITTMANN robots had a reputation for open architecture and flexibility, they reached out to see what they could do. WITTMANN BATTENFELD, INC., USA, initially setup a few complete automation cells, including robots, EOAT, downstream part orientation stations, and tray filling conveyor systems, to demonstrate their capabilities. The WITTMANN BATTENFELD employees stayed on site for a couple weeks, allowing them to provide extensive training on their systems. Intertech was then off and running, taking the reins from WITTMANN BATTENFELD. Their in-house engineering, automation, mold shop, and maintenance department used the programmability they had lacked before to create a new process and system that could exceed their customer’s needs.

“We love what we are able to do with the WITTMANN robots,” said Kevin Clements, Director of Engineering at Intertech Medical. “The capabilities far exceed anything else we see in the market, from their SmartRemoval technology to the training and support that’s available when needed. With this automation in place, our company achieved ROI on the complete automation system in less than 9 months.”

Since the completion of this work cell, Intertech has had zero returns from their customer, and was ranked by their customer as a preferred supplier. The design was so successful that they have replicated the technology to three additional work cells, and they now have nine WITTMANN robots in their plant.

IFR Press Releases

The automation of production is accelerating around the world: 74 robot units per 10,000 employees is the new average of global robot density in the manufacturing industries (2015: 66 units). By regions, the average robot density in Europe is 99 units, in the Americas 84 and in Asia 63 units.

The top 10 most automated countries in the world are: South Korea, Singapore, Germany, Japan, Sweden, Denmark, USA, Italy, Belgium and Taiwan. This is according to the 2017 World Robot Statistics, issued by the International Federation of Robotics (IFR).

“Robot density is an excellent standard for comparison in order to take into account the differences in the automation degree of the manufacturing industry in various countries,” says Junji Tsuda, President of the International Federation of Robotics. “As a result of the high volume of robot installations in Asia in recent years, the region has the highest growth rate. Between 2010 and 2016, the average annual growth rate of robot density in Asia was 9 percent, in the Americas 7 percent and in Europe 5 percent.”


The development of robot density in China was the most dynamic in the world. Due to the significant growth of robot installations, particularly between 2013 and 2016, the density rate rose from 25 units in 2013 to 68 units in 2016. Today, China’s robot density ranks 23rd worldwide. And the government intends to forge ahead and make it into the world’s top 10 most intensively automated nations by 2020. By then, its robot density is targeted to rise to 150 units. Furthermore, the aim is to sell a total of 100,000 domestically produced industrial robots by 2020 (2017: 27,000 units from Chinese robot suppliers, 60,000 from foreign robot suppliers).

Worldwide, the Republic of Korea has by far the highest robot density in the manufacturing industry – a position the country has held since 2010. The country’s robot density exceeds the global average by a good eight-fold (631 units). This high growth rate is the result of continued installations of a high volume of robots particularly in the electrical/electronics industry and in the automotive industry.

Singapore follows in second place with a rate of 488 robots per 10,000 employees in 2016. About 90 percent of robots are installed in the electronics industry in Singapore.

Japan ranked fourth in the world: In 2016, 303 robots were installed per 10,000 employees in the manufacturing industry – following Germany ranking 3rd (309 units). Japan is the world´s predominant industrial robot manufacturer: The production capacity of Japanese suppliers reached 153,000 units in 2016 – the highest level ever recorded. Today, Japan´s manufacturers deliver 52 percent of the global supply.

North America

Robot density in the United States increased significantly to 189 robots in 2016 – the country ranks seventh in the world. Since 2010, the necessary modernization of domestic production facilities has boosted robot sales in the United States. The main driver of this growth was the ongoing trend to automate production in order to strengthen American industries on the global market and to keep manufacturing at home, and in some cases, to bring back manufacturing that had previously been sent overseas. The automotive industry still leads as the main customer of industrial robots with about 52 percent of total sales in 2016. Robot sales in the United States will continue to increase between 2017 and 2020 by at least 15 percent on average per year.

Robot density in Canada has been on the rise and reached 145 units in 2016 (ranking 13th worldwide). Growth was mainly driven by installations in the automotive industry.

Mexico is predominantly a production hub for car manufacturers and automotive parts suppliers that export to the United States and increasingly to South America. The automotive industry in Mexico is by far the main robot customer with a share of 81 percent in 2016. Robot density is at 33 units, which is still far below the world average of 74 units, ranking 31st on the global scale.


Europe´s most automated country is Germany - ranking 3rd worldwide with 309 units. The annual supply and the operational stock of industrial robots in 2016 had a share of 36 percent and 41 percent respectively of total robot sales in Europe. Between 2018 and 2020, the annual supply in Germany will continue to grow by at least 5 percent on average per year due to the increasing demand for robots in the general industry and in the automotive industry.

France has a robot density of 132 units (ranking 18th in the world), which is well above the global average of 74 robots – but relatively weak compared to other EU countries. EU members like Sweden (223 units), Denmark (211 units), Italy (185 units) and Spain (160 units) enjoy a much higher degree of automation using industrial robots in the manufacturing segment. But under the new government, France is in the process of regaining competitiveness in its manufacturing sectors. This may, to a certain extent, promote installations of new robots in the next few years. In 2017, the number of robot installations in France is expected to increase by about 10 percent. Between 2018 and 2020, an average annual growth rate between 5 and 10 percent is likely.

As the only G7 country – the UK has a robot density below the world average of 74 units with 71 units, ranking 22nd. The general industry is highly in need of necessary investment in order to modernize and increase productivity. The low robot density rate is indicative of this fact. Despite the decision to leave the EU, there are currently many suggested investment plans for capacity expansion and modernization of foreign and local automotive companies. It is not evident though whether companies will hold back investments due to uncertainties concerning customs duties.

The eastern European countries Slovenia (137 units, ranking 16th in the world) and Slovakia (135 units, ranking 17th worldwide), both have a robot density that is above Switzerland’s (128 units, ranking 19th in the world). The Czech Republic is ranking 20th on the global scale with 101 units. Robot supplies in the Czech Republic and Slovakia mainly depend on the automotive industry’s demand. Slovenia is the most successful among the Balkan countries with 60 percent of the total robot supply used mainly for the automotive industry (387 units, 33 percent more than in 2015).

IFR Press Releases

I just returned from the iREX in Tokyo. The record number of more than 130,000 visitors and more than 600 exhibitors has demonstrated the high interest in robotics. The global success story of industrial robots continued in 2017 for the 8th year in a row. Prospects for 2018 and beyond are promising.

Dear Reader,

A few days ago, I was elected as President of the IFR. I succeeded Joe Gemma. He successfully followed the mission, to deliver a better understanding about what drives the rapidly changing world of robotics. As new President together with the new Vice President, Steven Wyatt, I will carry his mission forward - for the International Federation of Robotics. Robots increase productivity and competitiveness. Robots have been enablers for the industry development for automobile, semiconductor, distribution and so on. The quality of work has improved. Dangerous, tedious and dirty work is being transferred from human to machine.

2018 looks to continue the energy and excitement with multiple events that will have IFR or IFR member associations participation.

Major events in 2018

automatica 2018 (19-22 June 2018), Munich

  • IFR CEO Round Table at automatica, 20 June 2018
  • ISR 2018 (20-21 June 2018)
  • Joseph Engelberger Award presentation (20 June 2018)
  • IERA Award presentation (20 June 2018)

CiROS 2018 (4-7 July 2018), Shanghai

  • IFR-CRIA CEO Round Table at CiROS

INNOPROM 2018 (9-11 July 2018), Ekaterinburg

TAIROS 2018 (29 Aug – 1 Sep. 2018), Taipei

Robot World 2018 (10-13 Oct. 2018), Goyang-si

World Robot Summit (17-21 October 2018), Tokyo

Looking forward to another record year in 2018.


Junji Tsuda


International Robot Exhibition 2017 (iREX 2017), which was the largest scale ever, was a great success with 130,480 visitors from various countries during the four-day exhibition period from November 29 through December 2, 2017.

Held once every two years, the world biggest robot exhibition marked its 22nd exhibition this year and it attracted 612 exhibitors and 2,775 booths including 88 overseas exhibitors from 14 countries. It was held under the theme of “The Robot Revolution Has begun – Toward Heartwarming Society”, featuring the largest-size-ever industrial robot zone; service robot zone ranging widely from disaster reactions, nursing cares, and agriculture to education; and an array of international symposiums/forums held throughout the exhibition term. Reflecting the current trends in the robotics industry, many collaborative robots including newly developed ones were exhibited, and also more exhibits in logistics robot systems were shown at the Exhibition.


The North American automation market set new records through the first nine months of 2017, according to the Association for Advancing Automation (A3), the leading global advocate for the benefits of automating. Results found records set in the areas of robotics, machine vision, motion control, and motor technology.

Here is a look at the latest findings:


For the first nine months of 2017, 27,294 orders of robots valued at approximately $1.473 billion were sold in North America, which is the highest level ever recorded in any other year during the same time period. These figures represent growth of 14% in units and 10% in dollars over the first nine months of 2016. Automotive-related orders are up 11% in units and 10% in dollars, while non-automotive orders are up 20% and 11%, respectively.

For shipments, 25,936 robots valued at $1.496 billion were shipped in North America during the first nine months. These record high quantities represent growth of 18% in units and 13% in dollars over what sold in 2016. Automotive-related shipments also grew 12% in units and 9% in dollars during that time, with non-automotive shipments increasing by 32% and 22% for units and dollars, respectively.

The hottest industries were Metals (54%), Automotive Components (42%), and Food and Consumer Goods (21%).

Motion Control & Motors

Total motion control shipments increased by 10% to $2.6 billion, marking the industry’s best nine month mark since these figures began being tracked. The largest product category is Motors (38% of shipments), followed by Actuators and Mechanical Systems (18% of shipments), and Electronic Drives (17% of shipments).

The fastest growing categories in the first nine months of 2017 were Motion Controllers (24% to $147m), Sensors & Feedback Devices (20% to $116m), AC Drives (15% to $295m), Actuators & Mechanical Systems (13% to $479m), and Motors (11% to $1b).

The majority of suppliers believe that order and shipment volumes will increase in the next six months, with most distributors feeling that orders and shipments will be flat in the same time period.

Vision & Imaging

The North American Machine Vision Market continued its best start to a year ever in 2017, with growth of 14% overall to $1.937b, 14% in systems to $1.657b, and 14% in components to $271m. Each of those three categories set new records in the first nine months of this year, and every individual product category experienced positive year-over-year growth for the same period last year. Some notable growth rates were Smart Cameras (21% to $295m), Lighting (20% to $54m), Software (16% to $15m), and Component Cameras (14% to $143m).

Experts believe lighting, optics, imaging boards, and software will trend up, while camera sales will remain flat in the next six months. Additionally, expectations are for Application Specific Machine Vision (ASMV) systems to increase and smart cameras to remain flat over the same time period. The U.S. manufacturing sector expanded in the second quarter (avg. PMI of 53.0) and is expected to remain strong through the end of the year.


Interaction between rigid robotic devices and soft materials imposes significant challenges and largely unresolved problems to current practice in robotics. Therefore, a collaboration between the University of Stuttgart (Germany) and the University of Auckland (New Zealand) has been established, developing simulation-driven concepts and design for control and automation of robotic devices interacting with soft tissues.

The International Research Training Group (IRTG) consists of 8 institutes from Stuttgart and 5 institutes from Auckland, providing a wide range of research expertise ranging from simulation technology, through cyber-physical engineering and robotic device technology, to biomedical engineering and technologies. The project is led by Prof. Oliver Röhrle (Institute of Applied Mechanics) and Prof. Alexander Verl (Institute for Control Engineering of Machine Tools and Manufacturing Units) from the University of Stuttgart and Professor Peter Xu (Faculty of Engineering) and Associate Professor Leo Cheng (Auckland Bioengineering Institute) from the University of Auckland.

The research group aims to develop novel approaches to interact safely and adequately with soft tissues. Therefore novel concepts are going to be examined, covering the lack of information and knowledge on how soft materials deform and how signals can effectively be recorded and interpreted accordingly to provide appropriate feedback to the control. To achieve these goals, research will be advanced in detailed simulations of soft tissue on high performance computers, model order reduction and also in practical fields as developing new concepts for sensors and actuators as well as biomedical and industrial applications such as exoskeletons, meat cutting systems or surgical devices.

However, the main focus of the IRTG does not lie solely on new technical developments but as well on the education of a new generation of young researchers. Thus, 20 PhD students (10 from Stuttgart and 10 from Auckland) will be provided with unique education on the highest academic level. Combining the interdisciplinary skills and in-depth expertise in developing and applying novel simulation techniques, modelling approaches as well as sensing and control methods, the young researchers will be very well prepared to face the future challenges of soft tissue robotics.

The IRTG is funded by the German Research Foundation (DFG) within grant GRK 2198, starting with 2017.

IFR Press Releases

The Executive Board of the IFR has elected Japanese Junji Tsuda (Yaskawa Electric Corporation) as its new President. Mr. Tsuda succeeds Joe Gemma (KUKA, USA), who is leaving the rotating post as head of the global federation of robot manufacturers, having served his two-year term. Steven Wyatt (ABB, Switzerland) has been appointed as IFR´s new Vice President.

The 66 year old Junji Tsuda is one of the most senior experts in the robotics industry. He serves as the Representative Director Chairman of the Board of the Japanese robot manufacturer Yaskawa Electric Corporation. Tsuda began working for Yaskawa in 1976, after obtaining his university degree (B.S.) in mechanical engineering at the renowned Tokyo Institute of Technology. Since the 1990s, Tsuda has headed various America-related business units and has been active in the parent company since 2003. Before being elected President of IFR, Mr. Tsuda assisted his predecessor, Joe Gemma, as Vice-President, a role he held for two years.

The new elected Vice President, Steven Wyatt, is the global Head of Marketing & Sales for ABB’s Robotics Business Unit. Prior to joining ABB in 2010, Mr. Wyatt held a series of executive marketing & sales roles within the plastics industry globally. He holds a degree in Chemical Engineering from the University of Edinburgh in his native Scotland. Steven Wyatt and Junji Tsuda were both elected by the IFR Executive Board which is composed of representatives of national robotics associations from all over the world, the IFR president and delegates of robot manufacturers and research institutes.

Junji Tsuda thanked the previous IFR President, Joe Gemma, for his successful work: “The presidency of Joe Gemma followed the mission, to deliver a better understanding about what drives the rapidly changing world of robotics. He did a great job by communicating with our many stakeholders around the Globe. As its new President it is my pleasure to proceed with his work. Together with the new Vice President, Steven Wyatt, I will carry his mission forward - for the International Federation of Robotics.

IFR Press Releases

The production capacity of the Japanese suppliers has reached 153,000 units in 2016 – the highest level ever recorded. Today, Japan´s manufacturers deliver 52 percent of the global supply. These are results published by the International Federation of Robotics (IFR) ahead of the International Robot Exhibition (iREX) in Tokyo - November 29th - December 2nd 2017.

“Japan is a highly robotized country where even robots are assembled by robots”, said Joe Gemma, President of the International Federation of Robotics (IFR). “The statistics show that automation strongly boosts exports and domestic investments as well – robot sales in Japan increased by 10 percent to about 39,000 units in 2016 - reaching the highest level in the last ten years.”

Japan´s high export rate

Japan exported a total of nearly 115,000 industrial robots in 2016 with a value of 309 billion yen (about US$ 2.7 billion). This is by far the highest export volume for one year. The export rate increased from 72 percent to 75 percent (2011-2016). North America, China, the Republic of Korea and Europe were target export destinations. The Japanese imports of robots were extremely low, only about 1 percent of installations. Thus, foreign robot suppliers did not achieve a high sales volume in Japan. The home market has strongly recovered since the financial crisis in 2009 and reached 39,000 units, the highest level since 2006 (37,000 units).

Car- and electrical/electronics industry dominate

The automotive industry is the largest destination market for industrial robots in Japan with a share of 36 percent of the total supply. Car manufacturers bought 48 percent more industrial robots than in 2015 (2016: 5,711 units). Japanese car suppliers are leading in the production of hybrid cars and will increase investments in automated driving technologies. The development of new materials which reduce weight and save energy will also foster investments in robot automation. However, the ongoing reduction of production capacities in Japan will impact domestic demand for robots. Investments abroad, on the other hand, will continue to increase. The Japanese car companies have been increasingly expanding production facilities overseas, particularly in China, as well as other Asian countries and in the United States and Mexico.

After the strong growth of robots in the electrical/electronics industry in 2015 (11,659 units), a decrease of 7 percent followed in 2016. However, the electrical/electronics industry has preferred to invest in production facilities abroad. Furthermore, continued investments in robots can be expected in this sector with the increasing demand for chips, displays, sensors, batteries and other technologies around electro mobility, and industry 4.0 (connected industries).

The two most important customer groups of industrial robots in Japan - automotive and electrical/electronics - had jointly, a share of 64 percent of the total supply in 2016. Robot sales to both sectors increased by 8 percent in 2016. In all other branches, as a whole, the market increased by 14 percent.

Japan outlook 2020

In Japan, the economy benefits from increased foreign demand, especially from China, the expansive monetary policy of the Bank of Japan and the weaker yen. Based on estimates provided by the Japanese Robot Association (JARA), the IFR expects an increase of around 10 percent in 2017 in domestic installations. Between 2018 and 2020 a further average annual increase of about 5 percent is likely, provided the economic recovery in Japan continues.

IFR Japan data overview

Please find below an overview of the new IFR data about industrial robots in Japan:

Japan – new peak in 2016


  • 38,586 new robots installed (new record), 10% higher than in 2015
  • CAGR 2011-2016: +7%
  • Global ranking 2016: No. 3
  • Shares of total supply: Handling operations 36%, welding 22%; Automotive industry 36%, electrical/electronics industry 28%

Stock of operational robots

  • About 287,300 units, slight increase over 2015 (286,600)
  • CAGR 2011-2016: -1%
  • Global ranking 2016: No. 2
  • Shares of total stock: Handling operations 36%, welding 23%; Automotive industry 35%, electrical/electronics industry 31%, metal and machinery industry 10%

CEO Statements

“There are a variety of educational opportunities as well as many networking situations where I have broadened my industry contacts with suppliers, partners and end users. The IFR has been a strong advocate for our industry bringing awareness to crucial areas to insure visibility and awareness of the benefits of automation and service robots in various markets. The IFR offers the opportunity to exchange information and create alliances or partnerships.”

CEO Statements

“The industry is experiencing technical breakthroughs in many areas like human robot collaboration, mobility, and artificial intelligence. The IFR is the globally central point to stay informed about these and other trends. The key advantages of our involvement with the IFR have been and continue to be, education, networking, research and advocacy.”


Innovative Apps Significantly Improve Manufacturing Capabilities, Efficiencies, and Financials for Both End Users and Systems Integrators

OptoForce, a robotics technology provider of multi-axis force and torque sensors, announced that it has developed three new applications for KUKA industrial robots.

The new applications are hand guiding, presence detection, and center pointing and will be utilized by both end users and systems integrators. Each application, listed below, is also supported by new videos to demonstrate how they work.

Hand Guiding

With OptoForce’s Hand Guiding application, KUKA robots can easily and smoothly move in an assigned direction and selected route. This video shows specifically how to program the robot for hand guiding.

Presence Detection

This application allows KUKA robots to detect the presence of a specific object and to find the object even if it has moved. Visit here to learn more about presence detection.

Center Pointing

With this application, the OptoForce sensor helps the KUKA robot find the center point of an object by providing the robot with a sense of touch. This solution also works with glossy metal objects where a vision system would not be able to define its position. This video shows in detail how the center pointing application works.

“OptoForce’s new applications for KUKA robots pave the way for substantial improvements in industrial automation for both end users and systems integrators,” said Ákos Dömötör, CEO of OptoForce. “Our 6-axis force/torque sensors are combined with highly functional hardware and a comprehensive software package, which include the pre-programmed industrial applications. Essentially, we’re adding a ‘sense of touch’ to KUKA robot arms, enabling these robots to have abilities similar to a human hand, and opening up numerous new capabilities in industrial automation.”

End users and systems integrators will recognize two major business benefits from these new applications:

Performing New Automation Tasks in Manufacturing

  • For end users, this development provides new automation capabilities for the KUKA robots when using these applications - saving inspection and rework resources, and decreasing manufacturing costs. Automating precision-oriented tasks not previously possible will translate to higher quality and greater efficiency in production, therefore helping companies become more competitive in global markets.
  • For systems integrators, this means implementing applications with OptoForce sensors that will enable them to automate complex/precise tasks, accept more orders, and acquire more customers. Customers are more satisfied as well with the substantial rise in quality.

Providing Simpler and Quicker Integration Due to Software Package

  • Another major benefit is that the software package is a catalyst for the robot system integration, as the pre-programmed applications simplify the process, accelerating it approximately twenty percent. Simplified integration leads to less programming and documentation, enabling systems integrators to offer a quicker, more cost-efficient service to their customers.

IFR Press Releases

Sales in service robots for professional use will increase 12 percent by the end of 2017 to a new record of 5.2 billion U.S. dollars. And the long-term forecast is positive too, with an expected average growth rate of 20 to 25 percent in the period 2018 - 2020.

“In terms of value, the sales forecast 2018-2020 indicates a cumulative volume of around 27 billion U.S. dollars for the professional service segment”, says Gudrun Litzenberger,
General Secretary of the IFR. “Robots for medical, logistics and field services are the most significant contributors.”

At the same time, the market for personal service robots which assist humans in their everyday lives is also progressingrapidly; it is projected that sales of all types of robots for domestic tasks –e.g. vacuum cleaning, lawn mowing or window cleaning - could reach an estimatedvalue of around 11 billion U.S. dollars (2018-2020).

“Robots are clearly on the rise, in manufacturing and increasingly in everyday environments”, says Martin Hägele, IFR Service Robot Group.” The growinginterest in service robotics is partly due to the variety and number of new start-ups which currently account for 29 percent of all robot companies. Further­more, large companies are increasingly investing in robotics, often through the acquisition of start-ups.”

Service robot manufacturers and start-ups by regions

European service robot manufacturers play an important role in the global market: about 290 out of the 700 registered companies supplying service robots come from Europe.North America ranks second with about 240 manufacturers and Asia third with about 130.

Further progress will rely on entrepreneurs taking up disruptive technologies and deploying them for new applications and markets. In the US, about 200 start-up companies are working on new service robots. The European Union plus Switzerland count 170 companies that are creating a new entrepreneurial culture for the service robotics industry - followed by Asia with 135 start-ups. Virtually all economies are attempting to foster a vibrant entrepreneurial environment and the service robotics industry has become one of the focus areas of their public policies.

Service robotics market overview

Robotics in professional applications has already had a significant impact in areas such as agriculture, surgery, logistics or public relations and is growing in economic importance. There is a growing demand to monitor our everyday surroundings which results in increased and difficult-to-manage workloads and data flows. To meet this demand, robots will play an even greater role in the maintenance, security and rescue markets.

Robotics in personal and domestic applications has experienced strong global growth with a limited number of mass-market products: floor cleaning robots, robo-mowers and
robots for edutainment. Future product visions point to domestic robots of higher sophistication, capability and value, such as assistive robots for supporting the elderly, for helping with household chores and for entertainment.

About World Robotics Reports by IFR

The IFR Statistical Department publishes two robotics studies each year:

World Robotics - Service Robots: This unique report provides global statistics on service robots, market analyses, case studies and international research strategies on service robots. The study is jointly prepared with our partner Fraunhofer IPA, Stuttgart.

World Robotics - Industrial Robots: This unique report provides global statistics on industrial robots in standardizedtables and enables national comparisons to be made. It contains statisticaldata from around 40 countries broken down into areas of application, industrialsectors, types of robots and other technical and economic aspects. Production,
export and import data is listed for selected countries. It also describes thetrends in relation to robotic density, e.g. the number of robots per 10,000 employees in relevant sectors.

Europe and North America home of most service robotics manufacturers

Europe and North America home of most service robotics manufacturers

Start-ups foster a vivid entrepreneurial culture around the globe
Start-ups foster a vivid entrepreneurial culture around the globe

Press contact

Carsten Heer, [email protected]

Further files are ready for download in the World Robotics section and robot pictures are available in our Newsroom

IFR Press Releases

Today, the strongest growth in the robotics industry is in Asia – lead by China as the world´s number one marketplace. In 2017 robot installations are estimated to increase by 21 percent in the Asia-Australia region. Robot supplies in the Americas will surge by 16 percent and in Europe by 8 percent.

Important drivers of this development: robot adoption is a response to faster business cycles and the requirement to produce with greater flexibility tailored to customer demand in all manufacturing sectors. A new generation of industrial robots will pave the way for ever more flexible automation. “Robots offer high levels of precision and their connectivity will play a key role in new digital manufacturing environments,” says Joe Gemma, President of the International Federation of Robotics. “Increasing availability enables more and more manufacturers from companies of all sizes to automate.”

Industrial robots in operation

In terms of units, it is estimated that by 2020 the worldwide stock of operational industrial robots will increase from about 1,828,000 units at the end of 2016 to 3,053,000 units. This represents an average annual growth rate of 14 percent between 2018 and 2020. In Australasia the operational stock of robots is estimated to increase by 16 percent in 2017, by 9 percent in the Americas and by 7 percent in Europe. Since 2016, the largest number of industrial robots in operation has been in China. In 2020, this will amount to about 950,300 units, considerably more than in Europe (611,700 units). The Japanese robot stock will slightly increase in the period between 2018 and 2020. About 1.9 million robots will be in operation across Asia in 2020. This is almost equal to the global stock of robots in 2016.

TOP five markets in the world

There are five major markets representing 74 percent of the total sales volume in 2016: China, South Korea, Japan, the United States and Germany. China has significantly expanded its leading position as the largest market with a share of 30 percent of the total supply in 2016. With sales of about 87,000 industrial robots China came close to the total sales volume of Europe and the Americas combined (97,300 units). Chinese robot suppliers continued to expand their home market share to 31 percent in 2016.

Top 5 markets in the world
Top 5 markets in the world

South Korea is the second biggest market in the world. Due to major investments by the electrical and electronics industry in robots, annual sales increased considerably. About 41,400 units were sold in 2016. This is a rise of 8 percent compared to 2015. South Korea has the highest level of robot density in the world, about 630 robots installed per 10,000 employees in the manufacturing industry in 2016. Korea is a market leader in LCD and memory chip manufacturing.

In Japan robot sales increased by 10 percent to about 38,600 units (2016), reaching the highest level since 2006 (37,400 units). Japan is the predominant robot manufacturing country. Since 2010, the production capacity of Japanese robot suppliers has increased in order to meet the growing demand for industrial robots: production more than doubled from 73,900 units in 2010 to 152,600 units in 2016 (52 percent of the global supply in 2016).

In the United States robot installations increased by 14 percent to a peak of 31,400 units (2016). The driver for this continued growth since 2010 was the ongoing trend to automate production in order to strengthen the competitiveness of American industries in overseas markets. Investments have been made to keep manufacturing at home, and in some cases, to bring back manufacturing that had previously been relocated overseas. Due to this dynamic development, the robot density in the United States increased considerably – in particular in the automotive industry. With a density of 1,261 installed robots per 10,000 employees the United States ranked second in 2016 after the Republic of Korea. Most of the robots in the USA are imported from Japan, Korea and Europe.

Germany is the fifth largest robot market in the world and by far the largest in Europe. The annual supply and operational stock of industrial robots in 2016 had a share of 36 percent and 41 percent respectively of total robot sales in Europe. In 2016, the number of robots sold increased slightly to 20,039 units compared to 2015 (19,945 units).

Future trend: smart factory

Industry 4.0 - linking the real-life factory with virtual reality - will play an increasingly important role in global manufacturing. As obstacles like system complexities and data incompatibility are overcome, manufacturers will integrate robots into factory-wide networks of machines and systems. Robot manufacturers are already developing and commercializing new service models: these are based on real-time data collected by sensors which are attached to robots. Analysts predict a rapidly growing market for cloud robotics in which data from one robot is compared to data from other robots in the same or different locations. The cloud network allows these connected robots to perform the same activities. This will be used to optimize parameters of the robot’s movement such as speed, angle or force. Ultimately, the advent of big data in manufacturing could redefine the industry boundaries between equipment makers and manufacturers.

Future trend: small-to-medium-sized manufacturers to automate

Some robot manufacturers are also considering leasing models, particularly in order to accelerate adoption by small-to-medium-sized manufacturers. Simplification is a key trend for this market segment. The ongoing need for robots which are easier to use and to program and the increasing need for ever more flexible automation initiated the development of smarter solutions. This is especially useful for industries with a lack of specialized production engineers in-house. Thus, it is important to provide easy-to-use robots that can easily be integrated into and operated in standard production processes. Robots that are uncomplicated to use will enable the deployment of industrial robots in many industries to sustain efficient and flexible manufacturing.

Press contact

Carsten Heer, [email protected]

Further files are ready for download in the World Robotics section and robot pictures are available in our Newsroom

IFR Press Releases

IFR World Robotics 2017 Industrial Robots is published and it shows bright prospects for the robotics industry. Since 2010, the demand for industrial robots has accelerated at an increasing rate. By 2020 more than 1.7 million new industrial robots will be installed in factories around the world. What are the reasons for this successful development?

Dear Reader,

Faster business cycles, a requirement to respond to greater variety in customer demand, market pressure and the challenge of reducing emissions are issues common to all manufacturing sectors. Robot adoption is a response to these and other challenges, enabling companies to improve productivity of labor and capital by improving output per worker. Additionally, this allows for increasing production efficiency while cutting waste and increasing energy efficiency. Robots can work around the clock, offer high levels of precision and improve worker health and safety by performing dangerous and unergonomic tasks. Robots products continue to broaden including becoming smaller, more affordable and easier to program. This more easily accommodates for high-mix, low-volume models that are increasingly the norm in all manufacturing sectors. Robots now are more viable for small-to-medium-sized manufacturers for whom the capital investment cost of industrial robots and programming complexity have so far presented obstacles. The increasing availability and competitive pricing of collaborative robots - small, mobile, dexterous and easily programmable robots that work outside of cages and generally together with a human worker – enables manufacturers to automate short or mixed production runs that require high levels of precision and sophisticated vision and handling capabilities.

Creating high paying and skilled jobs has been a wonderful side benefit of automation. In fact, there is no evidence to support the notion of robots as job killers. The robots might be coming - but they are not coming for our jobs. Instead, there is clear evidence that humans will remain central to effective automation strategies which are key to improving productivity and economic growth. As in the past, this wave of technological change will alter job profiles. The evidence points to this mostly being in the direction of higher-skilled, higher-paid work force. We need more robots, not less of them, and our focus must be on ensuring current and future workers are equipped to work with them.


Joe Gemma

CEO Statements

Established in 1987, IFR has brought together the international robotics players in more than 20 countries. It is a unique platform for sharing information and exchanging ideas, thus contributing to the dynamic development of the robotics around the world. The role of IFR is becoming more and more important for further global development of robotics in the future. CRIA is proud to be part of this international robotics family.

CEO Statements

"The International Federation of Robotics is here to provide a reliable and highly trained professional network for the robotics community. By sponsoring the International Symposium on Robotics (ISR), the IFR stands as a major driver for researchers and engineers from around the globe, allowing them to present their pioneering works in service and industrial robotics."

IFR Press Releases

China has rapidly become a global leader in automation. From 2018 to 2020, a sales increase between 15 and 20 percent on average per year is possible for industrial robots. Annual sales volume has currently reached the highest level ever recorded for a single country: Within a year, sales in China surged by 27 percent to 87,000 units (2016).

The operational stock of industrial robots marks the highest level in the world. At the same time, Chinese robot manufacturers expand the market share in their home country. “China is by far the biggest robot market in the world regarding annual sales and regarding the operational stock,” said Joe Gemma, President of the International Federation of Robotics (IFR). “It is the fastest growing market worldwide. There has never been such a dynamic rise in such a short period of time in any other market.”

Electrical and electronics industry are the main drivers

The main drivers of the latest growth in China are the electrical and electronics industry. Sales increased by 75 percent to almost 30,000 units (2016). About one third of the robots were produced by Chinese robot suppliers, who more than doubled sales by almost 120 percent. All international robot suppliers also increased sales considerably to the electrical and electronics industry (+59 percent). This remarkable demand will further grow in the future. Major contract manufacturers of electronic devices have already started to automate production. The semiconductor and the chip industries, for example, have strongly invested in automation. Large battery production facilities are being installed to meet the increasing demand for electric and hybrid cars.

Car industry lost its pole position

The automotive industry lost its pole position to the electrical and electronics industry, but is still a powerful driver for industrial robot sales. China has become both the world’s largest car market and the world’s largest production site for cars – including electric cars - with much growth potential. Sales to China made up 25 percent of the global supply of industrial robots to the automotive industry in 2016. Between 2011 and 2016, a total of 108,000 units were installed, representing an average increase of 18 percent per year. The market share of Chinese robot suppliers in the automotive industry is still on a rather low level but has increased from 10 to 13 percent. China is the largest growing consumer market with increasing demands for all kinds of consumer goods. Consequently, various other industries have also started to expand capacities and automate production.

Some international robot suppliers have already launched production plants in China and in all likelihood more will follow suit in the coming years. Most industrial robots in China are imported from Japan, Korea, Europe, and North America.

China outlook 2020

The Chinese government wants to transform China from a manufacturing giant into a world manufacturing power according to the ten-year national plan “Made in China 2025”. The plan includes strengthening Chinese robot suppliers and further increasing their market shares in China and abroad. China intends to forge ahead and make it into the world’s top 10 most intensively automated nations by 2020. By then, its robot density is targeted to rise to 150 units – this being the number of industrial robots per 10,000 employees. Today, Asia is the leader regarding robot density is South Korea, with 531 robot units. In the Americas, it is the USA with 176 robot units and in Europe, it is Germany with 301 robot units.

IFR China data overview

Please find below an overview of the new IFR preliminary data about industrial robots in China:

China – new peak in 2016


  • 87,000 new robots installed (thereof, about 27,000 from Chinese suppliers), 27% more than in 2015
  • CAGR 2011-2016: +31%
  • Global ranking 2016: No. 1
  • Shares of total supply:
    Handling operations 45%, welding 26%
    Electrical/electronics industry 35%, automotive industry 30%

Stock of operational robots

  • About 340,000 units, 33% higher than 2015
  • CAGR 2011-2016: +36%
  • Global ranking 2016: No. 1

These are results published by the International Federation of Robotics (IFR) ahead of the World Robotics Report 2017 to be released on September 27th.

Press contact. Carsten Heer, [email protected]

Graph and German press release for download.


OptoForce, a robotics technology provider of multi-axis force and torque sensors, today announced that its HEX-70-XE-200N and HEX-70-XH-200N are both being renamed and have been enhanced with several new product developments in July. Although several new features are being added, the price point for the sensors will remain the same.

The HEX-70-XE-200N will now be branded as HEX-E and the HEX-70-XH-200N will be branded as HEX-H. Both models are part of OptoForce’s 6 axis F/T sensor family, which provides measurement in 6 axes. HEX-E offers higher precision while HEX-H provides lower deformation.

Optoforce Sensor HEX-E/HEX-H
OptoForce Sensor HEX-E/HEX-H © OptoForce

In addition, the following product enhancements have been made:

  • Each sensor will get increased overload protection - instead of having an overload capacity of two times, the sensors will now be strengthened to five times overload.
  • New integrated (built-in) sensor mounting plates are being added now making the product compatible with ABB. (The sensors have been and are fully compatible for Universal Robots and KUKA robots).
  • In addition, OptoForce is introducing a new compute box. This new platform allows for full compatibility with all robot types. The compute box provides a new interface that eliminates the need for an Ethernet or EtherCat. Also, with the compute box capability, computing capacity will be higher.
  • A new stronger cable clamp (90 degrees) has been added to improve the durability of the cable, further decreasing the chance of it breaking
  • Calibration was developed to advance sensor precision.
  • The hardware design was modified so that during sensor mounting, the axes of the sensor and the axes of the robot overlaps.

IFR Press Releases

The 13th Innovation and Entrepreneurship in Robotics and Automation Award (IERA) was presented to the Relay butler robot. Made by Savioke, an American company, the little robot completes deliveries all on its own, for example in hotels, hospitals or logistics centers.

Thanks to artificial intelligence and sensor technology, Relay can move safely through public spaces and navigate around people and obstacles as necessary.

“The IERA Award is one of the most important distinctions in the world of robotics today,” said Joe Gemma, President of the International Federation of Robotics (IFR). “This year’s award winner, Relay, perfectly exemplifies how research and development can successfully work hand in hand with industry.” The International Federation of Robotics (IFR) and the IEEE Robotics and Automation Society (IEEE/RAS) jointly sponsor the annual IERA award.

from left to right: Satoshi Tadokoro, IEEE-RAS President; Arturo Baroncelli, past IFR President; Steve Cousins, CEO Savioke; Erwin Prassler, IEEE-RAS Vice President
from left to right: Satoshi Tadokoro, IEEE-RAS President; Arturo Baroncelli, past IFR President; Steve Cousins, CEO Savioke; Erwin Prassler, IEEE-RAS Vice President

“This year once again, we received a large number of truly exceptional applications,” said Erwin Prassler, Vice President of the IEEE-RAS. “In the end, the jury was unanimous in its decision. This award is a testament to the excellent work by California-based Savioke led by its CEO, Steve Cousins. Steve Cousins and Savioke have developed the core technology in professional service robotics to a readiness level which enables a 24/7 operation in public, human inhabited environments.”

“Relay is the first fully autonomous delivery robot worldwide that is able to navigate safely through human-occupied spaces,” said Steve Cousins, CEO of Savioke. “Up until now, similar technologies have been limited to fixed routes, or deployed only in closely defined spaces. Our highest aim is always to create robots that can help people. The interaction should be as friendly and pleasant as possible.”

The Relay robot is barely three feet tall, with a slender 18-inch torso. It communicates with its surroundings via touchscreen, smart phone and sounds. Additionally, the robot is equipped with friendly, easy to understand facial expressions. A transport compartment is located at the top of the robot. The Relay robot can activate elevators on its own while delivering, making it well suited for performing deliveries in building complexes such as offices, hospitals or hotels. The ‘botler’ can deliver drinks, medication or towels, just like a human butler. When the job is done, Relay returns automatically to its docking station.

The first Relay models were deployed three years ago in the hotel industry. The second stage of deployment was in apartment and industrial buildings. Savioke robots have already completed over 100,000 deliveries in the United States, Asia and the Middle East. Relay is slated to come to Germany and France in the near future.

The IERA Award 2017 winners were selected by a jury comprised of high-ranking IFR and IEEE-RAS members. A total of four finalists were recognized this year for their innovative solutions. The other three finalists were:

  • Marco Hutter, ANYbotics AG, ANYdrive: A modular joint actuator for advanced interacting robots
  • Jody Saglia, Movendo Technology s.r.l.: Hunova - an easy to use and intuitive medical device
  • György Cserey, OptoForce Ltd: Sensing flexibility - 3D force and 6-axis force/torque sensors for industrial robotic applications


Chicken or egg? - By going digital of assembly systems, this famous question will soon be cleared up. SCHUNK is beginning to digitalize its entire gripper range and thus paves the way for virtual commissioning and simulation of complete handling solutions.

With the aid of the mechatronics concept designer from Siemens PLM Software and the Digital Twins from SCHUNK, designers and systems planners will soon be in a position to simulate complete assembly systems in 3D and virtually depict the entire engineering process from the concept to mechanics, electronics and software, right up to commissioning. Instead of the classical CAD cover model, a detailed digital image of the individual components appears, including their full functionality. The Digital Twin comprises the CAD volume model with all geometric data for modeling in Siemens NX, CAE data (EPLAN), and a kinematic behavior model in which the stroke, extension and retraction speed, acceleration, jerk, nominal force and mass are stored. In addition, SCHUNK seeks to extend its Digital Twins in a second step in the future with a range of PLC components for virtual commissioning (software/hardware in the loop).

Clear shortening of project duration

The integrated engineering with the aid of virtual simulation enables systems constructors and users a significant shortening of project duration, faster commissioning and clear efficiency effects for repeated implementation of similar systems. All relevant planning steps from calculation of the cycle times to designing the components with respect to traverse path and stroke as well as collision calculations can be completely virtually covered by the engineering software. Besides savings of 30% on pure engineering time, systems constructors and users also benefit from a significantly reduced project duration. Instead of only beginning programming after physically assembling the system, as had normally been the case until now, all individual processes can be systematically coordinated, programmed and optimized in the form of relative conditional rules using the virtual model. Furthermore, the virtual model forms the basis for follow-up and realtime control in ongoing production. In the first step, SCHUNK digitalizes its 24V mechatronics range for high-performance assembly. It comprises the parallel grippers SCHUNK EGP and EGL, the linear modules SCHUNK ELP, the rotary gripping modules EGS and the rotary modules ERS. The data can be requested from SCHUNK directly.

Yaskawa / Case Studies Industrial

For over 15 years HK-CON Maschinenbau GmbH has been designing and building high-tech metal cutting machines at its Fulda site. HK-CON recently realised a complete installation for Georg Fischer Fittings GmbH, manufacturer of cast iron fittings.

Besides replacing three previous installations, it satisfies the high customer expectations with regard to productivity and achieves exemplary cycle times despite its extremely complex design. Four Yaskawa handling robots are responsible for feeding: two Motoman MH12 and two Motoman MH5 robots, each of them operated with a DX 200 high-performance control.

At HK-CON Maschinenbau GmbH over 60 employees design and construct turning centres at a production plant of almost 4,000 m². Its product range comprises one- to two-spindle turning and milling centres which can be used, among other things, for turning, grinding or milling. About 99% of customers call for complete systems that can be integrated into their processes. In addition, the Fulda-based high-tech company offers professional services for the design and maintenance of machines. Customers from the automotive industry also employ HK-CON solutions. As David Reinmold, Head of Sales, assures: “Our solutions enable reductions of over 50% in unit costs, particularly in large-scale manufacturing, resulting in a drastic cut in overall production costs.” That also has an economic component: the lower unit costs once again make it profitable to produce in central Europe.

For Georg Fischer Fittings GmbH, based in Traisen/Austria, HK-CON has designed and constructed a complete machining centre for manufacturing malleable cast iron fittings. The challenge presented by the project: the installation was to be capable of manufacturing a total of 35 different final products – with an extremely low cycle time of five seconds per unit for the part with the shortest cycle time. Furthermore, it was critical that only absolutely immaculate parts be delivered to the cutting machine. That is the task assigned to the four Yaskawa Motoman robots – two MH 12 and two MH5 models – working in concert with the DX200 high-performance controls. They are supported by a camera system with a total of 6 cameras. The control software employed here is the MotoPlus SDK. As an interface it is responsible for communication with the cameras and regulates cooperation with them.

35 possible final products

In simplified terms, the facility has two turning centres located opposite to one another. Upstream of each of these are two Motoman robots. The robots are arranged cross-wise: the same models are situated bottom left and top right, and vice versa. This configuration has proved to be effective in achieving the necessary working range for loading – the machines could not be located closer together for work safety reasons.

The system includes a bunker for bulk goods and a feeding bench for special parts which are fed on pallets already in the correct orientation.
The system includes a bunker for bulk goods and a feeding bench for special parts which are fed on pallets already in the correct orientation. The installation can be operated either on two sides by mass feeding, or on one side with special parts.

The facility has a bunker for bulk material and a feeding bench for special parts, which are inserted in the correct orientation via pallets. The system can be operated either double-sided by mass feeding or one-sided for special parts, and the parts are delivered already sorted. Georg Fischer GmbH produces a total of nine different cast iron fitting components with this facility. The different sizes result in a total of 35 different final products. Hitherto, three of their own systems were required for their manufacture. Retooling times are only incurred in the new HK-CON system when a different component has to be machined. For the most part, varying sizes can be inserted without further conversion.

Robots and cameras work together

Three cameras are situated on each side, close to the robots. The first of these tell the Motoman robots where and how the parts are delivered and whether they are the desired components. Unwanted parts can already be eliminated at this point. If it is a required component, the camera inspects it for major defects and communicates the exact orientation and position to the robot. The robot now has all the information needed to pick it up. Once it has completed this step, it scans the part for casting defects, and in the case of doubt deposits it in a crate. If the part is free of defects, the handling robot moves to the next camera and rotates it three to four times, so that it can check all six to eight sides. At this point the camera checks whether sprue remains on the component. Here again, the robot has an opportunity to reject it. In addition, the camera recognises the orientation of the parts, enabling the robot to deposit them either in a subsequent turning station or directly on a belt conveying them to the next robot.

Correct parts which are flawless and lie in the right position are conveyed to the next robot. The third camera checks the position and angle of rotation. Finally, the second robot picks up the part from the outside and transfers it to the turning centre. Each of the two machines at the turning centre is two-spindle. This enables each of the two cutting machines to work two parts simultaneously and eject four finished parts, i.e. parts with the shortest cycle time, every 20 seconds. The machine runs 690 shifts per year. In this time it must produce a predetermined number of cast iron fittings.

If a different component is to be worked, a fitter may need to replace the robot jaws or adjust the delivery system. The different programs were taught, i.e. programmed, by HK-CON. The fitter only needs to select them. Every second counts in mass production. The system can be retooled in only one hour per side. Only half an operator is needed to operate the system.

Fast, precise, stable

“Because cast iron is difficult to handle, designing the system was also a challenge for us. However, with Yaskawa’s Motoman robots MH12 and MH5, the respective DX200 controls and the MotoPlus SDK software to coordinate the camera, we succeeded in designing the feed system so that at the end only high-quality parts arrive at the turning centres for machining,” explains David Reinmold. “We built a highly flexible system with higher productivity. It operates very fast, with highest precision and stability, and requires less operating personnel.”

At the time of placing the order, the customer specified that the system should be equipped with Yaskawa handling robots. One of the reasons for this was the good price-performance relationship of Yaskawa products; the other was that exclusively Yaskawa robots had hitherto been used throughout the plant, and the employees had already been trained to use them.


Thanks to HK-CON’s complete installation for metal cutting, Austrian malleable cast fittings manufacturer Georg Fischer GmbH was able to replace three old machines. For smooth running production it is important that only absolutely immaculate components be delivered to the turning centres. With the Yaskawa Motoman robots (two MH12 and two MH5 models) the DX200 controller and the MotoPlus interface for coordination of the cameras, the installation achieves precise results with extremely short cycle times. In addition, the system is highly flexible: a total of 35 different final products can be manufactured.

All pictures ©: YASKAWA

Universal Robots

The manufacturer of collaborative robots has developed online training modules to further lower the automation barrier. The hands-on modules are offered free of charge, open to all, and built to deliver hands-on learning via interactive simulations to maximize user engagement.

Learning how to set up and program a collaborative robot – or cobot – no longer depends on real life access to a robot or a training class. Now everybody with a desire to learn the concepts of cobots can log in to the Universal Robots Academy and get the introduction necessary to master basic programming skills.

CTO and founder of Universal Robots, Esben Østergaard, explains that it is unusual in the industry to make a robot training curriculum of this kind available for free. “But this is a long-term investment for us. We want to raise the robot literacy and the reason for speeding up the entry of cobots is not only to optimize production here and now,” says Østergaard. “We are facing a looming skills gap in the manufacturing industry that we need to bridge by all means possible. Facilitating knowledge creation and access to our robots is an important step in that direction.”

The online training modules are available in English, Spanish, German, French and Chinese and consist of six e-learning modules that make up the basic programming training for UR robots. This includes configuring end-effectors, connecting I/Os, creating basic programs in addition to applying safety features to an application.

One of the early adopters of the Universal Robots Academy is the Whirlpool Corporation where the online training modules now provide the basic foundation for all UR robot training at the company’s plant in Ohio, USA. Tim Hossler, Controls Engineer at Whirlpool, emphasizes the great convenience of being able to offer this resource to employees in-house: “Now we don’t have to wait and send them out for basic training elsewhere. The modules can be completed at our own pace and we can even pick and choose which modules we offer different personnel depending on skill sets and their level of interaction with the robots,” says Hossler. “I really like the interactive approach, it makes learning very hands-on and transferable to what we would actually be doing here at our plant. I was also pleasantly surprised that the modules were free of charge for anyone to use. It definitely increases the accessibility of the UR robots.”

Stefan Stubgaard, Global Product Manager at Universal Robots, says that the academy modules have received positive feedback from users around the world: “This learning resource is now also reaching small and medium-sized manufacturers that up until now regarded robotics as costly and complex, says Stubgaard. “By simply logging into the Academy they experience first-hand how simple the setup can be and they can easily envision what production tasks could be automated with the cobots. We will definitely be adding more modules to complement our basic offering going forward.”

KUKA / Case Studies Industrial

MRK-Systeme GmbH, Augsburg, Germany, specializes in industrial solutions that are based on human-robot collaboration. The company enables direct human-robot collaboration – without the need for safety fencing. The 16 employees of the company, which was founded in 2004, work primarily for customers in the field of mechanical engineering, with a particular focus on the automotive industry.

The factory of the BMW Group in Landshut has one of the most modern light-metal foundries in the world. The crankshaft housings for the entire BMW fleet are manufactured in Landshut, irrespective of whether the engines have three, four or six cylinders. BMW wished to automate the process at the factory in Landshut in order to safeguard the quality of the crankshaft housings. This quality assurance process cannot, however, be automated in its entirety. Skilled personnel are still required to keep a watchful eye on proceedings. For this very reason, the assignment issued to MRK-Systeme GmbH was to develop a system in which humans and robots cooperate directly. This safeguards the well-being of the employees, who no longer need to move heavy components. “Human-robot collaboration ensures that the employees at BMW are relieved of ergonomically unfavorable tasks,” explains Michael Mohre, Head of Operations at MRK-Systeme GmbH, who plays a decisive role in the installation of automation systems. For 18 months now, two identical applications have been in operation at the BMW production line in Landshut, Bavaria. Each application includes one KUKA robot of type KR 210 R2900 prime K from the KR QUANTEC series, specializing in high payloads. The K indicates the shelf-mounted variant of the robot. In this application, an employee controls the movement of one robot by means of a joystick in order to maneuver the components into a position that allows them to be inspected for faults without the need for the employee to deviate from a natural posture.

Every crankshaft housing is inspected

Each crankshaft housing that is manufactured is delivered into the workspace by a conveyor. Depending on the design (three, four or six-cylinder engine), the higher-level controller selects the appropriate program to control the movement of the robot. Once the crankshaft housing reaches the robot’s workspace, the worker controls the movement of the robot using the joystick. This sees the robot move towards the housing along a defined path, close the gripper and bring the component to the operator. The worker then inspects the component for faults using a cold light lamp. All the while, the robot securely holds the component weighing roughly 30 kg at the optimum height for the employee. Once the operator has completed the inspection process, he moves the robot with the housing back to the conveyor belt and sets the housing down. The interactive inspection process is then ended by pressing a button. In doing so, the employee documents whether the part is “OK” or “not OK”.

The employee controls the KUKA KR 210 R2900 prime robot from the KR QUANTEC series using a joystick, thus allowing him to inspect the components for faults without deviating from a natural posture
The employee controls the KUKA KR 210 R2900 prime robot from the KR QUANTEC series using a joystick, thus allowing him to inspect the components for faults without deviating from a natural posture

The requirement: to be as safe and as user-friendly as possible

In the case of direct cooperation between human and machine, the safety of the employees is always the main priority. Three mutually independent safety devices ensure maximum safety at the work station. The safety system consists of a programmable logic controller (safe PLC), which also controls the gripper in a safe manner, a safe robot controller, which limits the robot to certain speeds within workspaces, and an enabling switch. The robot cannot move at all unless the employee holds down the enabling switch. If the employee lets go of the switch, the robot stops immediately. Straightforward operator control is also crucial for ensuring that human-robot collaboration (HRC) is practical. The system is implemented in such a way that it is easy for both right-handed and left-handed employees to control the robot. Furthermore, the operator can master the robot control functions intuitively. If the employee pushes or pulls the joystick handle forwards/backwards, the robot moves in a parameterized direction. If the joystick is moved to the left or right, the robot realigns itself accordingly. The height of the crankshaft housing in relation to the worker can also be adjusted using a thumbwheel.

Ergonomics: a decisive factor

Up to now, the quality inspection was carried out using an “aero wheel”. The crankshaft housing was rotated using an aero wheel and brute strength so that it could be inspected for faults from all sides. The inherent problem: the aero wheel is heavy. Moreover, tall workers in particular had to stoop over during every inspection which could result in back injuries. The objective was to come up with an application that relieved the employees of ergonomically unfavorable tasks, was easy to control and adhered to the short cycle times required. “Our robots are predestined for the specific requirements put forth by BMW because they can be deployed flexibly. In addition, it is easy to reprogram the robots if changes are made to components. What’s more, they offer good value for money,” explains Mohre, whose company works exclusively with KUKA products. Both of the KUKA KR QUANTEC series robots that are used in the application have a payload capacity of 210 kg. The KUKA KR QUANTEC series, which forms part of the company’s high payload segment, specializes in quick cycle times and the highest level of path accuracy.

Plans to expand the existing system

Both systems have been in operation since 2015. Time to sum up the results: “We have been able to meet all of the customer’s expectations. The cycle time requirements have been met and the employee’ tasks are now far more enjoyable,” says Mohre. Mohre and his colleagues are now working on plans to expand the system. There are plans to install another two quality assurance test stands in order to keep up with the increase in production. “The new applications will be identical to the existing applications with the sole exception that some new features will be incorporated,” Mohre reveals. In addition to the success achieved with this application, the system also demonstrates that collaboration between humans and robots is both useful and safe.

Valk Welding / Case Studies Industrial

The Dutch supplier Korte Friesland does precision welding in a quality which in some cases is barely achievable manually.

Despite the many modifications, they were unable to achieve the required precision with their previous welding robot. For that reason a Valk Welding robot system with offline programming had been at the top of their wish list for some time. The supplier now has a universally usable welding robot system that both positions the components and welds them with the required level of precision.

Top quality welding and the precise machining of large parts are what the professionals at Korte Friesland do best. As well as tooling for Aerospace the supplier also works for OEMs in the agricultural sector, machinery manufacturers and the simulator industry. They confidentially leave the production of their frames and critical parts for their machines to this Frisian supplier. “With a reliability of supply above 95% and a maximum of 0.4% rejection we are now supplying 3-metre rotors for grass mowers with a tolerance within 1 mm. It is only because of our investment in this Valk Welding robot system that we are able to achieve this precision and quality”, says owner Henk Korte.

Certified welding

Korte Friesland has shown with its quality assurance certificate ISO 3834-2 that it is able to meet the strictest welding requirements. “Our experienced welders are happy to take on complex orders. The internal training plan and the certification of our welders result in consistently high welding quality, says company manager Samuel Oberman. Oberman is an International Welding Specialist and is responsible both for the welding process and the quality assurance aspect. “All of the welders and materials are certified and registered in the manufacturing manual. This makes it possible for us to trace who made the weld. The next step is to also certify the welding robot. Registrating the settings and the conditions makes it possible to predict the quality of the weld. Getting this data in correct format makes it possible to attract new business”, explains Oberman.

Universally deployable welding robot system

Although the welding robot system is now used mainly for the production of the rotors, the system is suitable for a wide range of products with a length up to 9m. For this purpose Korte Friesland has made its own mobile welding fume extraction system and the fixed screen. The Panasonic TL- 2000WG3 on a track now serves 2 separate jig supports with a length of 4 metres. “Removing the middle section and relocating the positioners makes it possible for us to weld longer components. We also have 2 jig supports at the back for small products. This makes the system very flexible, which places it perfectly in line with our machinery for metalworking”, says Samuel Oberman.

Offline was an important requirement

Henk Korte: “We started by looking into how a number of colleague companies tackled welding robotisation. Valk Welding’s robots with offline programme appealed to us the most. DTPS is more than just a programming system: we also use it to design our welding jigs and to plan the welding jobs. With our other welding robot we often had to spend a couple of days on programming a complex product online. The welding robot had to be taken out of operation during that time. With the Valk Welding robot system we not only achieve the required precision, but also gain a lot of time.”

Gripper system

Korte Friesland uses the welding robot for several rotor types. For one of them 128 mounting brackets have to be welded around a 3m tube. Valk Welding has developed a gripper system that is situated next to the welding torch. Each bracket is taken off a shelf and held at the pre-programmed position on the shaft so that the robot can attach it. Samuel Oberman: “Because of the heat distribution aspect, the welding order is very important to remaining within the runout. The sequence is laid down in DTPS, for which we have divided the rotor into small sections that are welded alternately. It is only barely possible to organise that division manually.”

Wire searching

For another type of rotor corner lines are welded to the tube with 345 small welds. As well as the welding order, finding the welding position of the corner lines is a vital aspect of the welding process with the welding robot. For this purpose use is made of the Quick Touch wire search system that Valk Welding has integrated in DTPS. The robot relocates the 3 to 4 corner lines. Wire searching is based on the gas nozzle searching system, but uses the welding wire rather than the gas nozzle as the ‘sensor’. The big advantage of this wire search method is that it is not only possible to detect all weld forms: access is improved to areas that are difficult to reach and the detection works with both thin and thick plates.

Turnover secured

By investing in the welding robot system Korte Friesland has secured an important part of its turnover. “The products are now in line with the requested specifications and we have also been able to substantially step up our productivity. We used to weld 5 to 6 rotors a day, but this has now risen to 8 a day. And the next orders for the welding robot are already in the pipeline”, concludes Henk Korte. www.kortefriesland.nl

IFR Press Releases

The number of robots installed by the French car industry rose 22 percent to 1,400 units – compared with 700 units in the UK (+ 7 percent). The automotive sector is one of the main driving forces modernizing the French economy: with a robot density of 940 units per 10,000 workers, France currently ranks 2nd within the European Union - the UK ranks 10th with 606 units.

French investments in machinery accelerate

In France, investment in machinery and equipment are accelerating at a faster pace than the overall economy. The frontrunners here are the dynamic showcase industries, such as automotive: annual robot sales to the automotive industry as a whole increased by an average of 7 percent per year between 2010 and 2015. During the same period, the motor vehicle sector ordered on average 6 percent more robots per year and the demand from automotive parts suppliers increased by 9 percent. Since 2010, governmental initiatives to strengthen production in France have resulted in significant investments by the automotive industry. The two French automotive suppliers, PSA and Renault, will further invest in new car models, energy efficient cars, common platforms and also modernize their factories. Both companies have already successfully restructured to insure their position for increased productivity to meet the demand. Automotive parts suppliers will benefit from investments by the automotive industry in France as well as from the improving car market in Europe.

Automotive companies face up to Brexit

It is not unfair to assume that the decision to leave the EU will influence investment decisions by foreign car companies on production sites in the UK. For example, Japanese auto makers such as Toyota, Nissan and Honda export more than three quarters of their vehicles built in Britain, and most of these exports go to other European countries. Were they to have to pay duty on the shipments of goods, they might decide to move out of the UK. We assume, however, that the UK government will develop regulations and supporting measures to avoid this. In any case, there are currently frequent announcements on investment plans concerning capacity expansions and modernization by foreign and local automotive companies. Investments in the general industry sector should also gain momentum. The development of robot installations in the next few years depends on the question “if and when” these planned projects will actually be implemented in the country. This said, it can be assumed that investments planned by domestic manufacturers will most likely go ahead and that and that modernization, as well as a strengthening of their overall competitiveness, will continue unabated.

Robots support competitiveness and employment in Europe

“The positive impact of robots on European competitiveness and employment can be seen in Germany,” said Joe Gemma, President of the International Federation of Robotics. “The country´s automotive sector, for instance, holds the top position for robot density in Europe - with about 1,150 industrial robots per 10,000 employees. As a result of the ongoing trend to automate production, employment in the German car industry rose by about 93,000 jobs to 813,000 during the period 2010 to 2015.” In France, modernization and digitalization of production systems is increasingly likely to involve small and medium enterprises over the coming years. The country´s main strength lies in industrial software and networking objects which could positively impact the implementation of new production concepts and create scope for employing innovative machinery and equipment and likely create new opportunities for skilled labor.

Press contact: Carsten Heer, [email protected]

IFR Press Releases

This paper provides the IFR’s opinion on the impact of automation - specifically of robots - on productivity, competitiveness and employment. IFR is not a policy institute. However, this report includes the main conclusions from a variety of experts on appropriate policy responses to ensure ongoing positive outcomes from automation and the ongoing development and uptake of robots, with which we concur.

Driving the increase in public interest in robotics and automation is both a fascination with the potential of these technologies to change our lives, and a fear of the impact of automation – including robotics – on jobs. These fears are tied into broader geo-political and social shifts driven by issues such as trade policy and immigration that, overall, contribute to a sense of insecurity about the employment prospects of current and future generations. Consequently, many headlines focus on the potential negative outcomes of automation. This risks overshadowing the very real positive contributions of automation and robotics to productivity, competitiveness and job creation. In addition, it could undermine discussion and action on the measures that should be taken to enable countries, organizations, and individuals to reap the benefits of automation.


The Association for Advancing Automation (A3) announced that the Automate 2017 show and conference broke all previous attendance records with show attendance of 12,960 people, which is a 37 percent increase over 2015. With the collocated ProMat and ProFood Tech attendees taking advantage of free entry, well over 20,000 people visited Automate.

The show is North America’s premier biennial event devoted to leading-edge automation technology and business innovation. Automate featured more than 400 exhibitors displaying their latest technologies and services, including global suppliers of robotics, motion control, motors, vision systems, metrology, software and system integration services for enterprises large and small. In addition, over 1,000 attendees participated in the 120+ Automate conference sessions, which were held in conjunction with the International Symposium on Robotics – Americas, a greater than 90 percent increase over 2015.

“Automate has firmly established itself as the leading automation show in North America,” said Jeff Burnstein, president of A3. “This year’s record attendance demonstrates the growing global demand for the entire ecosystem of automation technologies and services.”

Automate features key automation industry business leaders and has become the primary event for breaking automation news. The show opened with a jobs forum titled “Working in the Automation Age,” featuring speakers from A3, Amazon, Advanced Robotics for Manufacturing (ARM) Institute, RAMTEC Ohio, and FANUC. In conjunction, A3 released a white paper exploring how companies like General Motors and Amazon continue to grow their workforce even as they add automation technologies.

First-Ever Chinese Participation

Automate 2017 also garnered increased international participation. For the first time, 13 Chinese automation companies exhibited, reflecting China’s dramatic growth in robotics implementation and development. A first-ever joint US-China Robotics Forum brought together leaders from the Robotic Industries Association (RIA) and its counterpart, the China Robot Industry Alliance (CRIA).

Launch Pad Startup Competition

A3 announces Apellix as the winner of the Automate Launch Pad Startup Competition. Sponsored by GE, the competition provided eight innovative startup companies with an opportunity to generate awareness of their technology and find new sources of funding. Apellix offers a Platform-as-a-Service for industrial workers performing critical but dangerous tasks. The patent-pending Apellix Worker Bee robotics system physically interacts with and modifies its environment to move workers out of harm’s way. The $10,000 prize will allow Apellix to bring their product to market sooner.

Automate 2017 Reflections

Automate brings together business leaders from every facet of the automation industry providing opportunities to meet customers, network and showcase solutions.

“Automate was a great show,” said Staubli robotics division manager, Sebastien Schmitt. “Staubli couldn’t hope for a better event to meet new prospects. The customer traffic in our booth the entire show was excellent!”

Date Set for Automate 2019

A3 has also announced the date and location for Automate 2019. It takes place April 8-11 at Chicago’s McCormick Place.

“A3 anticipates that demand for exhibition space for Automate 2019 will be even higher than prior years,” added Burnstein. “We expect to run out of space well before the event.”

Participants and exhibitors can find more information about Automate 2019 at the event website: www.automateshow.com.

IFR Press Releases

The US automotive industry has installed a new record of approximately 17,500 industrial robots in 2016. In the last seven years, the operational stock increased by about 52,000 units (2010-2016) according to IFR. During the same period, the number of jobs in the US automotive sector rose by 260,600 - according to the US Bureau of Labor Statistics.

The US automotive industry has installed a new record of approximately 17,500 industrial robots in 2016. In the last seven years, the operational stock increased by about 52,000 units (2010-2016). These are preliminary results published by the Statistical Department of the International Federation of Robotics (IFR). During the same period, the number of jobs in the US automotive sector rose by 260,600 - according to the US Bureau of Labor Statistics.

“The main driving force of this growth is the ongoing trend to automate production in order to strengthen the competitiveness of American industry globally, to keep manufacturing at home, and in some cases bring back manufacturing that had previously been outsourced to other countries,” said Joe Gemma, President of the International Federation of Robotics at the World Robotics IFR CEO Roundtable in Chicago.

Amazon creates new jobs

“The key message is the optimism about jobs in the future – especially with technology”, said Jon Battles, Amazon Director, WW Engineering Advanced Technologies. “We are so proud of announcing that we are going to create a hundred thousand new fulltime and full benefit jobs in the United States. These jobs are all across the country. I want to make a really critical point: We are doing this level of hiring after installing 45,000 Amazon robotic systems in our fulfillment centers. I don´t have any better success story to give than that and we a hiring in every job class and level.”

Small businesses automate or vaporate

Prof. Dr. Howie Choset of the Advanced Robotics Manufacturing Institute (ARM) emphasized the importance of automation with robots for small companies. 98.5 percent of all the manufacturing companies in the US have 500 or fewer employees. “These small companies – this is their phrase not mine – automate or vaporate. They know if they don´t embrace automation they will not be around in the future.”

“As a small business we experience every day where our customer base will move something for pennies,“ said Craig Hertig, Director of Engineering, Engineered Machine Products. “Automation is a very usable tool, it´s very flexible. It gives you the opportunity to be competitive in a global market.” As an example of how automation made the difference, Michael P. Jacobs, President of Applied Manufacturing Technologies AMT said: “I was at a friend´s plant just outside Detroit with stamping machines. That particular plant is not very large – he has got to have 30 to 40 robots there in automation. The plant had been shuttered in 2007 and he bought it in 2010. He now has over 200 employees in his plant because of automation. It is very doable by small companies.”

Education is key to reap the benefits of robotics

“We have about 8 million baby boomers exiting the workforce over the next five to ten years,” said Amazon´s Jon Battles. “It turns out the baby boomers are the most industrial trained part of the US workforce. We are heading towards a gap and I hope we all internalize the importance of inspiring this young generation coming up, retraining the people we have, giving them a great vision for careers in the future and following through on that. I am very optimistic about the future and the jobs and the technology. As long as we embrace it and train for it correctly we have an awesome future.”

The IFR strongly supports the idea that education and training systems must be adapted to enable current and future workers to reap the benefits of robotics. This task falls to both public and private sectors and requires strong cooperation between the two.

IFR Press Releases

The International Federation of Robotics (IFR) invites journalists to the World Robotics IFR CEO Round Table 2017 where world leading experts e.g. from Amazon, General Motors and ABB will discuss automation and the future of US manufacturing - one-on-one interviews can be arranged.

Robots play a key role in automating the US economy. Human robot collaboration and artificial intelligence will be game changers in the manufacturing industry.

When: Monday, 03 April 2017, 01:00 - 03:00 pm

Where: AUTOMATE 2017, McCormick Place North, Future of Automation area, Chicago, IL

The panel

  • Jon Battles, Amazon
    Director, WW Engineering Advanced Technologies
  • Mark Franks, General Motors
    Director, Global Automation and North America Vehicle Launch
  • Craig Hertig, Engineered Machined Products
    Director of Engineering
  • Howie Choset, Advanced Robotics Manufacturing Institute (ARM)
  • Per Vegard Nerseth, ABB
    Group Senior Vice President
  • Michael P. Jacobs, Applied Manufacturing Technologies AMT

Chaired by

  • Timothy Ward, Journalist, Washington D.C.


  • Welcoming and presentation of the participants of the IFR CEO Round Table by Gudrun Litzenberger, IFR General Secretary (5 minutes)
  • Presentation of new Global Sales Data of Industrial Robots by the IFR President Joe Gemma, KUKA USA (15 minutes)
  • Discussion on “Automation and the Future of US Manufacturing” (50 minutes + 20 minutes questions of the audience)
  • Get together and personal interviews with the panelists (optional)

To register, please contact Carsten Heer:

Email: [email protected]
phone: +49 (0) 40 82244 284

CEO Statements

“What I have learned from IFR: The market data on new technologies and trends provided by the IFR are essential for anyone involved in robotics. The IFR meetings have been tremendously beneficial for bringing together industry and academia, and providing invaluable networking opportunities.”

CEO Statements

"One of the key benefits of the IFR is its influence on public opinion, to bring across the positive impact robotics has on economic performance, and to ease fears of technology. Particularly in times such as these, in which populist messages are prevalent, society needs an institution that informs objectively about robotics with well-founded statistics and research."

CEO Statements

"Robotics technology is the key element of future production. This is already clear in the automobile industry and other relatively large scale productions. But now, robot co-workers are creating new opportunities and applications, particularly in the medium and small size enterprises, through easier set-up and reasonable costs. The IFR introduces these applications and paves the way towards potential future markets."

CEO Statements

"The IFR has established itself as the benchmark for robotics in the world. It provides a communication platform among world-class robotics companies on new market trends and technological developments. As a rapidly growing robotics company within the emerging market in China, ESTUN Robotics is proud to be a member of IFR, creating mutual benefits."

IFR Press Releases

Bill Gates' latest idea to tax robots aims to solve a problem that does not exist: empirical analysis of economic data and forecasts shows that automation and the use of robots create new jobs by increasing productivity.

This is in line with the historical experience of technological revolutions, last seen when computers and software automated the business world. To tax production tools instead of their profits would have a negative impact on competitiveness and employment. This is presumably why the European Parliament rejected the idea to impose a robot tax and the International Federation of Robotics strongly agrees with that decision.

According to the McKinsey Global Institute, more than 90 percent of jobs will not be fully automatable in the future. Instead, robots and humans will work together. The positive impact that the increased productivity of robots has on employment can already be seen in the most advanced industrial nations. The US automotive industry, for instance, installed more than 60,000 industrial robots between 2010 and 2015. During this same period, the number of employees in the US automotive sector increased by 230,000. The same trends can be seen in the most advanced economies in Europe and Asia. Moreover, recent research by the OECD on the future of productivity shows: companies that employ technological innovation effectively are up to 10 times more productive than those that do not. This has a positive impact on competitiveness.

Profits, not the means of making them, should be taxed

A robot tax would make these much-needed investments in technology more expensive for companies. “Profits, not the means of making them, should be taxed,” says Joe Gemma, President of the International Federation of Robotics. Research shows that automation actually results in a positive tax balance for social systems. Repetitive or dangerous tasks are replaced by industrial robots, leading to the creation of new, safer, higher-skilled and higher-income jobs that increase pension contributions.

Avoid bureaucracy and use international standards

The IFR strongly supports the idea of greater cooperation in robotics between the public and private sectors. They must adapt education and training systems for example, so that current and future workers can reap the benefits of robotics. Yet, it is important to avoid bureaucracy which does not deliver value.

The IFR believes that a European agency for robotics and artificial intelligence would create such bureaucratic overhead. The civil law issues related to robotics are already addressed by existing legislation. Product liability and safety are covered by global standards and EU directives such as the European machinery directive. At present, there is no need for further development or the establishment of a separate category for robotics. The current process at European level needs to take into account what has already been standardised: the world’s largest International Organization for Standardization ISO, has established a special Technical Committee for robotics - the ISO/TC 299. Technical experts from American, Asian and European countries have developed international robot safety standards under European harmonisation. All countries concerned are involved in these activities. The sector has a major interest in developing standards at the global level rather than looking only at European or national activities. “The IFR is convinced that regulations on robotics must be developed in close collaboration amongst representatives of the public sector, robotics manufacturers, robot users and developers, as well as researchers,” says Joe Gemma.

Press contact

Carsten Heer
Tel. +49 (0) 40 822 44 284
E-Mail: [email protected]

IFR Press Releases

Asian industry’s uptake of industrial robots is accelerating: in just five years its operational stock rose 70 percent to 887,400 units, (2010-2015).

In 2015 alone, annual sales of robots jumped 19 percent to 160,600 units, setting a new record for the fourth consecutive year. These are results of the World Robotics Report 2016, published by the International Federation of Robotics (IFR).

China is the biggest market for industrial robots in the world and takes 43 percent of all sales to Asia including Australia and New Zealand. It is followed by the Republic of Korea, with a share of 24 percent of regional sales, and Japan with 22 percent. That means 89 percent of robots sold in Asia and Australia went to these three countries in 2015.

China will remain the main driver of growth in the region and will expand its dominance. By 2019, almost 40 percent of the global supply will be installed in China. Continued growth in robot installations is predicted for all major Asian robot markets: Korea, Japan, Taiwan and other Southeast Asian countries.

Electrical and electronics industry overtakes automotive sector

The main driver of the latest growth in Asia was the electrical and electronics industry. Sales for this segment jumped 41 percent in 2015 to 56,200 units. This compares to 54,500 units in the automotive industry which is just a 4 percent rise. Within only a five year period, shipments of industrial robots to the electrical and electronics industry have more than doubled.

The manufacturing industry – still by far the number one by volume - recorded an annual growth of 25 percent to 149,500 units in 2015.

With regards to robotics density, the current leader is South Korea, with 531 robot units per 10,000 employees, followed by Singapore (398 units) and Japan (305 units). These Asian countries rank in the top 10 most advanced industries. Worldwide, the average robot density is 69 robot units per 10,000 employees.

“China will continue to be a strong future market for the robotics industry. Part of this trend is driven by the Chinese government´s 2025 initiative to support automation. The country aims to become a leader in automation globally,“ says Joe Gemma, President of the International Federation of Rootics.

IFR Press Releases

The worldwide number of domestic household robots will rise to 31 million between 2016 and 2019. The sales value of robots cleaning floors, mowing lawns, and cleaning swimming pools will grow to about 13 billion US dollars in this period.

These forecasts are takes from the 2016 World Robotics Report, “Service Robots”, published by the International Federation of Robotics (IFR).

“Robotics in personal and domestic applications has experienced strong global growth with relatively few mass-market products: floor cleaning robots, lawn mowers and edutainment robots are dominating the market,” says Joe Gemma, President of the International Federation of Robotics. “But the next generation of robots will have even greater capabilities and will open up new fields of application.”

Robots as domestic helpers

In the coming years, vacuum and floor cleaning robots will continue to make up the lion’s share of units at work in households. Sales will rise from 3.6 million units (2015) to around 30 million units within the 2016-2019 forecast period. Vacuum and floor cleaning robots account for 96 percent of domestic robot sales. Robotic mowers and pool cleaning robots rank second and third, respectively.

Entertainment robots

Sales figures for the entertainment sector show a similar dynamic. In 2015, the total number of toy robots, remote-controlled multi-media robots and personal edutainment robots amounted to 1.7 million units. The IFR forecasts that this market will grow to 11 million units between 2016 and 2019. Toy and hobby robots account for 70 percent of the market share in the entertainment segment.

Assistive robots for the handicapped and elderly

Strong growth is reported in sales of handicap assistive robots and for the elderly. At 4,700 units (2015), the sales volume is still comparatively low. But sales figures are expected to rise to 37,500 units from 2016 to 2019. The rise in the value of sales will mirror this development: Sales in 2015 amounted to USD 16.8 million - a year-on-year increase of 34 percent. The total value is forecast to rise to USD 97 million between 2016 and 2019.

IFR Press Releases

2016 was again a successful year for industrial and service robots and we look forward to a promising and challenging year 2017.

Dear Reader,

2016 was again a successful year for industrial and service robots and we look forward to a promising and challenging year 2017.

In a few weeks, we will meet at the Automate in Chicago which will host the ISR Americas 2017. Sponsored by the International Federation of Robotics (IFR), the ISR a unique robot event that is hosted various places around the world, bringing new global insights on the latest in robotics applications and research. The ISR will be fully integrated into the Automate 2017 conference sessions, allowing all participants to learn about the newest developments in robotics, machine vision, imaging, motion control and other automation technologies covered at Automate.

The ISR will also celebrate a gala dinner for the Robotic Industries Association (RIA) Joseph F. Engelberger Robotics Awards, the industry’s highest honor. We are looking forward to more developments in 2017 another exciting year of growth in the market. Other major events will follow in 2017.

Major events in 2017

  • Automate 2017 (3-6 April 2017), Chicago
  • IFR CEO Round Table at Automate (4 April 2017)
  • ISR Americas 2017 - (3-6 April 2017)
  • Joseph Engelberger Award 2017 (5 April 2017)
  • IERA Award 2017 at ICRA Conference (29 May-3 June 2017) Singapore
  • CIROS 2017 (5-8 July 2017), Shanghai
  • IFR-CRIA CEO Round Table at CIROS
  • ISR Asia 2017
  • INNOPROM 2017 (10-13 July 2017), Ekaterinburg
  • IFR-RAR CEO Round Table at Innoprom
  • Robotworld 2017 (13-17 September 2017), Seoul
  • iREX 2017 (29 November - 2 December), Tokyo

Looking forward to another record year in 2017.


Joe Gemma
IFR President

At the EUnited Robotics members’ assembly on Thursday, December 8, 2016, Walter Zulauf, Director of Technology at Güdel Group AG, was elected as the new Chairman of EUnited Robotics for the next three years.

Walter Zulauf will succeed Henrik A. Schunk (CEO, Schunk GmbH & Co. KG) who held the position for the last 6 years. Schunk, who is keen on continuing his contributions to EUnited Robotics, was elected as Vice-Chairman. Wilfried Eberhardt (Chief Marketing Officer, KUKA AG) was elected, for a second term, as Vice-Chairman of the EUnited Robotics. Wilfried Eberhardt currently also serves as President of the umbrella organization, EUnited aisbl.

In his tenure as Chairman, Henrik Schunk substantially transformed EUnited Robotics’ profile establishing it as the European robotics industry association with clear vision, mission and goals. He played an indispensable role in creating closer ties with the European Commission. And, he was instrumental in gathering experts and key players at the first European Robotics Summit in 2015, which initiated an open exchange on issues of concern for the robotics industry in Europe and set the course for future exchanges.

As the new EUnited Robotics Chairman, Walter Zulauf will continue the work on key trends that will shape the future of our industry. The company Güdel was one of the founding members of EUnited Robotics in 2004. Walter Zulauf has been with Güdel since 1990 and as a close associate of the late Rudolf Güdel he has been strongly involved in all EUnited Robotics activities for many years.

“I am delighted to be elected as the new chairman of EUnited Robotics and look forward to continue working with all of you,” said Walter Zulauf at the EUnited Robotics Members’ Assembly on December 8th.


ARENA2036 is a research campus in Stuttgart where partners from industry and research institutions investigate and demonstrate the future of automobile manufacturing.

Up until now, the core of automotive manufacturing processes is the assembly line, whereas future production systems will ask for more agile and transformable manufacturing systems with reduced dependency from conveyor belts and fixed cycle times. Advanced robotics and autonomous guided vehicles will play a crucial role in these future concepts. Part of the ARENA2036 campus is the “research factory”, coordinated by the Fraunhofer Institute for Manufacturing Engineering and Automation IPA, which bundles research activities and implements them in practice. Flexible and changeable robots that allow close cooperation with the worker are one of the key-enablers of changeable production.

ARENA2036 is a public private partnership and stands for “Active Research Environment for the Next Generation of Automobiles”. It is a completely new type of cooperation between research institutions and industry. The project aims to redefine automobile development and production along the entire value chain so that the sustainable and resource-efficient
production of small lot sizes to the costs of mass production becomes feasible. Furthermore, the research factory will present a main use case of future Industry 4.0 and thus demonstrate the efficiency and flexibility of a completely digitalized “smart factory”.

The research campus was founded in 2013. First consortium members were among others the University of Stuttgart, Fraunhofer IPA, Daimler and Bosch. Currently, a new appropriate building with a total project area of 7000 sq. m for running a research factory and office space for hosting over 100 engineers and scientists is mostly finished and will be
officially inaugurated by spring 2017.

Future car manufacturing

The production of the future, which is the objective of the “research factory”, is just one part of ARENA2036. Starting with the simulation of the car model, the applied materials and the manufacturing as a digital prototype, this computer-aided manufacturing (CAM) fastens the building of fewer prototypes and reduces defective goods as well as development loops. Thanks to a new composition of materials like carbon fiber, high-strength steel and composites automobiles will weigh less than today. This is also due to function-integrated lightweight constructions: Work pieces like sensors and harnesses will already be installed in the components in order to reduce time and cost for the assembly. New propulsion concepts like hybrid solutions with combustion engines, fuel cells or pure electrical vehicles will also be considered.

Not just flexible but agile production

One of ARENA’s aims is to develop and implement agile production systems. Today’s markets become more and more volatile. This means for example shorter product life cycle times and more personalized products. In order to maintain their competitiveness, companies must be able to compensate these fluctuating demands efficiently. This gets evident when a new car model enters the market and the demand is extremely high or when the demand for an expiring model decreases: this often leads to supply shortages or overcapacity and hence lost profit.

New materials and new drive train concepts pose new requirements on the manufacturing plants. The main problem here is that the future market demand cannot be predicted. As shown by research into flexible manufacturing systems (FMS) engineering, a high level of flexibility into the manufacturing system usually does not pay off in the end. If modifications are necessary after commissioning, this risks high costs or even a complete new construction. In contrast to this, agile production systems can easily and quickly be adapted to the market needs of changing lot sizes and different production technologies.

For being able to reduce the dependence on manufacturing lines in ARENA2036, autonomous guided vehicles (AGV) will transport the components and chassis from work station to work station. The AGV acts as cyber physical system in an Industry-4.0-scenario, connected to all other components of the fully digitalized assembly line. This flexible
chain of assembly stations allows that every model variant follows its optimized and specific path through the manufacturing shop floor. If a new model variant appears and shall be manufactured, new assembly stations can easily be integrated. Also, modern cars feature more and more capabilities for autonomous driving. In the final assembly, these autonomous-driving capabilities might even be used for moving from work station to work station hence further reducing the need for manufacturing equipment.

Human-Robot-Cooperation for an adjustable automation degree

Human-Robot-Cooperation (HRC) is an enabler for agile production systems. It allows combining traditional robot capabilities such as stamina, high payload and precision with the dexterity, cognitive capabilities and creativity of humans. Fraunhofer IPA is currently developing an assembly station that allows HRC for the assembly of a car door module. The worker executes tasks for which sensitivity and complex motion sequences are necessary, like the fitting and clipping of harness connectors or the complex joining trajectory of the door handle. The robot relieves the worker by undertaking monotonous and simple working steps, e. g. the insertion and the screwing of the module and the body shell.

The assembly station can easily be adapted in accordance to the number of orders, the needed portfolio of variants and technologies as well as the individual customer requirements. The free movability and configuration of all components of the assembly station allow its
versatility. AGVs transport all components to the station. The lightweight robot can use different tools like vacuum grippers or screw drivers depending on the corresponding work tasks. Besides the free positioning on the shop floor the stations can be composed according to
the customers’ demands. Depending on the workload, the assembly stations are scalable: If lot sizes are small, workers can do the assembly manually or are supported by robots for the monotonous tasks. Given medium lot sizes, the tasks can be shared between worker and robot for real human robot collaboration. And if high lot sizes have to be produced, a parallel assembly line can be opened that is served from worker and robot either simultaneously or at staggered intervals. The representation of this sliding automation degree is another research objective of the “research factory” which is driven by all the partners in ARENA2036.

Fraunhofer IPA has wide experience in the conception and planning of agile production systems not only within the context of ARENA2036. The institute works regularly together with system integrators to realize complex automation solutions. Companies from SME to large multinational enterprises can benefit in various ways from the researcher’s expertise: the automation experts analyze existing manufacturing systems in order to improve their efficiency and changeability; they conceive and plan new systems and develop hard- and software components as for example changeable gripping systems which enable an agile production adapted to the specific needs of each customer.

IFR Press Releases

In the last six years, (2010-2015), the US industry has installed around 135,000 new industrial robots. The principal driver in this race to automate is the car industry. During this same period, (2010-2015), the number of employees in the automotive sector increased by 230,000.

Today, the robot density in the automotive sector of the United States rank second worldwide to that of Japan. The industrial renaissance in North America continues unabated; provided the global economy remains stable, it is estimated that robot shipments to Canada, Mexico and the US will grow at an average annual rate of 5% to 10%.

The industrial sector in the US continues to invest strongly in robotics and automation. At 27,500 units in 2015, the number of newly installed industrial robots has more than tripled since the financial crisis of 2009. The main driver of this growth is the ongoing trend to automate production in order to strengthen the competitiveness of American industry globally, to keep manufacturing at home, and, in some cases, to bring back manufacturing that had previously been outsourced to other countries.

The US automotive industry is leading the automation charge: between 2010 and 2015, more than 60,000 industrial robots were installed in the United States. Only in China were there more industrial robots installed during the same period - almost 90,000 units. The carmakers in the US have successfully restructured their businesses following the economic and financial crisis in 2009; General Motors, the top manufacturer of cars and light vehicles in the US, further stabilized its market share in 2015, as did Ford Motor Company. Automation has played a critical role in enabling European and Asian car manufacturers and automotive parts suppliers to expand their capacities in the US and to invest in the modernization of their existing facilities. The robot density in the United States increased to 1,218 robots per 10,000 employees in the automotive industry in 2015 (Japan = 1,276; Korea = 1,218; Germany =1,147; France = 940 robots per 10,000 employees).

Car manufacturers and component suppliers will continue to be heavy users of robots. In addition, more and more new companies specialized in electric or autonomous vehicles are starting up in the United States and are in need of modern and efficient production facilities. This said, after six years of continuously growing industrial robot sales to the US automotive industry, a moderate decrease in the overall sales growth is anticipated for 2016 - 2017; the retooling necessary for new car models will then drive an increase in demand for industrial robots starting in 2018 - 2019.

The electronics industry continues to be the fastest-growing emerging industry forindustrial robots in the United States (2014-2015 = +41%). Increasing numbers of orders can also be expected from the metals and machinery industry, the rubber and plastics industry, the pharmaceutical and cosmetics industry, and the food and beverage industry. Changing customer demands necessitate the modernization and expansion of capacities which, combined with local industry’s need for automation to strengthen its competitiveness, will lead to further increase in demand for industrial robots.

“The rapid rise of robot use in the United States is impressive for several reasons,” said Jeff Burnstein, President of Robotic Industries Association. “First, we’ve seen the industry’s largest user, the automotive industry, accelerate its purchases of robots and at the same time create more jobs in the manufacturing process. Second, we’ve seen strong growth in the use of robots in general industry, as robots further penetrate industries such as life sciences, warehousing, and semiconductor and electronics manufacturing. Finally, the use of robots is rising in small and medium sized companies who see robotics as a key factor in improving productivity and product quality in order to stay globally competitive. We expect these trends to continue well into the future,” Burnstein explained.

IFR Press Releases

The total number of service robots for professional use sold in 2015 increased by 25 percent. The sales value surged by 14 percent to a new record of US$ 4.6 billion. By 2019, sales forecast indicates another rapid increase up to an accumulated value of US$ 23 billion for the period 2016-2019.

In terms of units, logistic systems make up 53 percent of the total forecast of service robots in this segment. Service Robots for personal and domestic use surged by 16 percent in 2015 to a value of US$ 2.2 billion. Between 2016 and 2019 estimated sales will rise up to an accumulated value of US$ 22 billion.

“The demand for service robots is seeing a historic breakthrough”, says Joe Gemma, President of the International Federation of Robotics, “In addition to the already established business with professional service robots the personal and domestic segment is increasingly dynamic. Growth forecasts between 2016 and 2019 are just excellent.”

Service robots for professional use

In the segment with service robots for professional use, sales of medical robots rank ahead of agricultural and logistics robots. In all three top groups, growth dynamics are expected to be strong during the period 2016 to 2019: In the medical segment - with its major fields of applications in diagnosis, surgical assistance and rehabilitation - sales value is expected to rise to US$ 7.2 billion. In agriculture - especially with milking robots - an increase up to US$ 5.7 billion is expected. In the logistics systems - with the major share of automated guided vehicles (AGV) - a sales value of US$ 5.3 billion is expected. Demand in the logistics has already seen strong growth from 2014 to 2015. The number of units sold rose by 50 percent to 19,000. The sales value surged during the same period by 52 percent to US$ 779 million. Based on the manufacturers’ market shares, 81 percent of the logistics systems are produced in the US - only 11 percent in Asia and 8 percent in Europe.

The overall outlook for all professional service robots is very positive: In the period 2016-2019, sales of approximately 333,000 new units will rise to a total of US$ 23 billion.
The overall outlook for all professional service robots is very positive: In the period 2016-2019, sales of approximately 333,000 new units will rise to a total of US$ 23 billion.

Service robots for personal and domestic use

A sales value of a comparable scope is emerging for service robots for personal and domestic use. The forecast of approximately 42 million sold units taken together will amount to about US$ 22 billion (2016-2019). Broken down by areas of application, household robots are the largest segment - both with the number of units and by market value. 3.7 million of these types of robots were sold in 2015 (vacuum cleaners, lawn mowers, window cleaners) - an increase of 11 percent compared to 2014. Between 2016 and 2019 a sales boom of approximately 31 million units is forecasted. The sales value climbs to US$ 13 billion in this period. Entertainment robots will also see a strong growth in sales. From 2014 to 2015, unit sales of entertainment robots jumped by 29 percent to around 1.7 million units. Especially toys and hobby systems enjoyed great popularity with consumers. The entire segment is projected to increase to a total of 11 million units (2016-2019). The sales value adds up to around US$ 9 billion in the same period.

The outlook for Household robots is quite positive: between 2016 and 2019 31 million units are forecasted
The outlook for Household robots is quite positive: between 2016 and 2019 31 million units are forecasted

Service Robotics Start-Up Companies

The service robotics segment is currently dominated by European (43 percent) and North American producers (37 percent). Nearly 20 percent come from Asia. It is interesting to see the rising number of start-ups in this relatively new market. Around 620 companies have been identified. With nearly 10 percent of all start-ups, the US is currently in the lead.

Captions for downloadable service robot pictures below

The UV-Disinfection Robot is a disinfection robot for hospitals and manufacturing, to be used with the aim of reducing infection rates of hospital-acquired infections (HAIs) and microorganisms in production. The UV-DR has a kill rate of 99.9% and moves autonomously and safely around facilities. (Image credit: Blue Ocean Robotics)
The UV-Disinfection Robot is a disinfection robot for hospitals and manufacturing, to be used with the aim of reducing infection rates of hospital-acquired infections (HAIs) and microorganisms in production. The UV-DR has a kill rate of 99.9% and moves autonomously and safely around facilities. (Image credit: Blue Ocean Robotics)

Discovery IGS 730 is a robotics 3D imaging system for minimally invasive surgery co-designed be GE Healthcare and BA Systèmes. This angiography system brings both extremely high-quality imaging and complete workspace freedom to the hybrid operating room. (Image credit: BA Systèmes)
Discovery IGS 730 is a robotics 3D imaging system for minimally invasive surgery co-designed be GE Healthcare and BA Systèmes. This angiography system brings both extremely high-quality imaging and complete workspace freedom to the hybrid operating room. (Image credit: BA Systèmes)

Agribot is a robot, that autonomously does all the work in orchards and plantations. It is controlled via the operator panel accesible through a web browser. Here, it can be seen during one of the first field tests in a vineyard, where ist capabilities to operate two machines at once was tested. (Image credit: Agribot sp. z o.o)
Agribot is a robot, that autonomously does all the work in orchards and plantations. It is controlled via the operator panel accesible through a web browser. Here, it can be seen during one of the first field tests in a vineyard, where ist capabilities to operate two machines at once was tested. (Image credit: Agribot sp. z o.o)

IFR Press Releases

The incentives to automate are forcing the manufacturing industries all over the world to continue to improve their production processes in order to be competitive in a global market.

Dear Reader,

Let me just start with sad news. It is with our deepest sorrow that Xavier Grau, General Manager of our member association AER-ATP, Spain, passed away on September 4, 2016 in Barcelona at the age of 59. With gratitude we pay our respect to his work in robotics and all the contributions he made to the IFR. Our thoughts are with his family. Another robotic pioneer passed away these days - Victor Scheinman the inventor of the Stanford arm. He developed a programmable six jointed robotic arm that performed small-parts assembly using feedback from touch and pressure sensors. He founded Vicarm Inc. to market a version of the arm for industrial applications.

Today, World Robotics 2016 Industrial Robots is published.

Despite the rather moderate development of the global economy since 2010, the demand for industrial robots has accelerated with double digit growth rates. It seems evident that the demand for industrial robots will further increase considerably. Why?

The incentives to automate are forcing the manufacturing industries all over the world to continue to improve their production processes in order to be competitive in a global market. The demand for consumer goods is increasing especially in the emerging markets; and the life-cycles of many of these products are decreasing. With a shorter time-to-market requirement to meet the demand changes, technological innovations are needed. The demand for high quality products and sustainable solutions is rising all over the world. The increasing diversity of consumer goods requires a sound flexible production system to adjust the production processes in order to meet the customer needs without compromising quality.

The automation of manufacturing has not only increased productivity but also has resulted in continued increase of employment in the relevant countries. One example is my country, the United States. Here the automotive industry has invested highly in robotics and automation in the past years. Between 2010 and 2015, almost 80,000 industrial robots were installed in the United States. In the same period, the number of employees increased by 230,000 people. The US automotive industry has successfully restructured their businesses following the economic and financial crisis in 2009. General Motors, the top producer of cars and light vehicles in the US, further stabilized its market share in 2015 as did Ford Motor Company. Automation has played a crucial role in European and Asian car manufacturers and automotive parts suppliers to assist in expanding capacities in the US and investing in modernization of their existing facilities. The robot density in the United States increased to 1,218 robots per 10,000 employees in the automotive industry in 2015. The United States ranked second together with the Republic of Korea following Japan with a robot density of 1,276 units.

The work in factories is changing. Robots can improve working conditions for employees. Dangerous, tedious and dirty work is transferred from human to machine. Not only the environment is cleaner for the worker, but also the job is less physically fatiguing. In addition, by educating workers on how to use robots they can learn valuable programming skills and perform more stimulating tasks. The vision is that robots and humans collaborate. Co-bots will assist people in the workplace, support workers in a variety of tasks, improve manufacturing quality and processes, and increase productivity. They can also assist an aging workforce, e.g. in physically demanding tasks. This enables people to keep their jobs and remain in the workforce. It will also take some pressure off the negative effects of demographic shifts.


Joe Gemma

IFR President

IFR Press Releases

By 2019, more than 1.4 million new industrial robots will be installed in factories around the world - that’s the latest forecast from the International Federation of Robotics (IFR).

In the race for automation in manufacturing, the European Union is currently one of the global frontrunners: 65 percent of countries with an above-average number of industrial robots per 10,000 employees, are located in the EU. The strongest growth drivers for the robotics industry are found in China; however, in 2019 some 40 percent of the worldwide market volume of industrial robots will be sold there alone. So says the 2016 World Robotics Report, as published by the International Federation of Robotics (IFR).

“Automation is a central competitive factor for traditional manufacturing groups, but is also becoming increasingly important for small and medium-sized enterprises around the world”, says Joe Gemma, President of the International Federation.

The industrial robots boom 2019

The number of industrial robots deployed worldwide will increase to around 2.6 million units by 2019. That’s about one million units more than in the record-breaking year of 2015. Broken down according to sectors, around 70 percent of industrial robots are currently at work in the automotive, electrical/electronics and metal and machinery industry segments. In 2015, the strongest growth in the number of operational units recorded here was registered in the electronics industry, which boasted a rise of 18 percent. The metal industry posted an increase of 16 percent, with the automotive sector growing by 10 percent.

European Union well on course towards automation - China making up ground

The strongest growth figures in Europe are being posted by the Central and Eastern European states - the rise in sales was about 25 percent in 2015. Also 2016 a similar growth rate is forecasted (29 percent). The positive trend is expected to continue. The average growth will remain steady at around 14 percent per year (2017-2019). The biggest climbers in sales of industrial robots are the Czech Republic and Poland. Between 2010 and 2015 the number of new robot installations climbed in the Czech Republic by 40 percent (compound annual growth rate) and in Poland by 26 percent (CAGR).

In a worldwide comparison, the European Union member states as a whole are particularly far advanced regarding automation. This is evident from the robot density existing in the automotive industry, for example. Half of the top 10 nations with the most industrial robots per 10,000 employees belong to the European Union. The highly developed nature of automation in Europe is also clear from looking at the manufacturing industry. Of the 22 countries with an above-average robot density, 14 are located in the EU. The robot density in the big Western European economies is still currently ahead of up-and-coming China. The largest gap in this respect is with Germany (301 vs. 49 units) ? the smallest being with the United Kingdom (71 vs. 49 units).

China, the market for growth

With a national 10-year plan - entitled “Made in China 2025” - the country is aiming to become one of the top technological industrial nations within just a few years. However, in order to achieve Beijing’s target of a robot density of 150 units by 2020, some 600,000 to 650,000 new industrial robots will have to be installed throughout China. By comparison: Around 254,000 units were sold in the global market during 2015. Nevertheless, today China is already a leading sales market. At around 68,600 units sold, the statistics for 2015 were 20 percent above the previous year’s figures, thereby exceeding the volume of sales for all European markets combined (50,100 units). Total sales will increase by 30% in 2016 and between 2016 and 2019 by 20% on average to more than 400,000 units in 2019. This will be 40% of the total sales in 2019.

The Republic of Korea and Japan come in second and third place, as the world’s largest sales markets for industrial robots. The number of units sold in 2015 grew by 55 percent in the Republic of Korea, and by 20 percent in Japan. Together with Singapore, these two countries lead the rankings of the global automated economies for robot density in manufacturing. With a stable economic situation, it may be expected that both Korea and Japan will see average annual growth of 5 percent in sales of robots from 2016 to 2019.

North America on path to success

The USA is currently the fourth largest single market for industrial robots in the world. Within the NAFTA area (USA, Canada and Mexico), the total number of newly installed industrial robots rose by 17 percent to a new record of some 36,000 units (2015). The leader of the pack was the USA, accounting for three-quarters of all units sold. 5 percent growth was recorded. With a comparatively much smaller amount of units, the demand in Canada increased by 49 percent (5,466 units), while that in Mexico grew by 119 percent (3,474 units). With a stable economic situation, it may be expected that North America will see average annual growth of 5 to 10 percent in sales of robots from 2016 to 2019.

The USA plays a leading role when it comes to automation in the automotive industry. US car makers are ranked third in robot density, behind Japan and the Republic of Korea. The US automotive industry has performed well over the last six years. 2015 proved to be the most successful year since 2005. Major manufacturers from the US, Europe and Asia embarked on restructuring programmes resulting in the installation of some 80,000 industrial robots between 2010 and 2015. This is the largest investment worldwide, second only to China at around 90,000 units. This commitment is reflected in the increasing number of new jobs: The number of people employed in the automotive sector grew by around 230,000 between 2010 and 2015.

Robots and jobs

The enormous automation programmes with robots had a positive effect on employment not only in the US. In the German automotive sector, the number of employees likewise increased parallel to the growth of robotic automation: The increase between 2010 and 2015 averaged 2.5 percent - the operational stock of industrial robots showed a parallel increase averaging three percent per year. The positive effect of automation on the number of jobs is confirmed by a study recently published by the ZEW, in partnership with the University of Utrecht. In essence, reduced production costs result in better market prices. The increasing demand then triggers more jobs.

Outlook 2019

By the end of 2016, the number of newly installed industrial robots will have increased by 14 percent to 290,000 units during the year. For 2017 to 2019, continued growth averaging at least 13 percent per year is forecasted (CAGR). Robotics manufacturers have made preparations for these kinds of growth prospects. To this end, production capacities have been increased, and the majority of European manufacturers are operating new locations in the large sales markets of China and the USA.

As far as technological trends are concerned, companies will, in the future, be concentrating on the collaboration of human and machine, simplified applications, and light-weight robots. Added to this are the two-armed robots, mobile solutions and the integration of robots into existing environments. There will be an increased focus on modular robots and robotic systems, which can be marketed at extremely attractive prices.

The demand among customers for industrial robots will likewise be driven by a whole assortment of factors. This includes the handling of new materials, energy efficiency, better developed automation concepts, enabling the real-world factory and the virtual world to be interlinked with one another, as per the definition of Industry 4.0 and the Industrial Internet of Things.

IFR Press Releases

China wants to make the leap into the Top 10 of the world’s most intensively automated nations by 2020.

By then, its robot density is targeted to rise to 150 units - this being the number of industrial robots per 10,000 employees (2015: 36 units). The aim is to increase annual sales of domestically produced industrial robots to 100,000 units by 2020. This goal was declared by Wang Ruixiang, President of the China Machinery Industry Federation, speaking at the “China International Summit of Robot Industry” in Shanghai. With a robot density of 36 units, China is currently ranked 28th in the world. So says the World Robot Statistics, issued by the International Federation of Robotics (IFR).

The Chinese market for industrial robots continues to be strongly influenced by imports. Foreign manufacturers make up a market share of 69 percent. However, domestic competitors are currently increasing their market share significantly. Within two years, the sales volume posted by Chinese manufacturers has risen from 25 percent in 2013 to the most recent figure of 31 percent. The Beijing government is promoting the rapid expansion of automation, through its reform agenda entitled “Made in China 2025”. “By the end of 2020, I reckon that the share of the domestic market enjoyed by Chinese robotic manufacturers could well increase to 50 percent”, said Dr. Daokui Qu, CEO of the Chinese robot maker Siasun, at the recent IFR CEO Round Table in Munich.

Asia registered the world’s highest sales figures for 2015; at 156,000 units this represented a rise of 16 percent in comparison to the previous year. The region’s largest individual markets were China (67,000 units), followed by South Korea (37,000 units) and Japan (35,000 units). The five markets of China, South Korea, Japan, the USA and Germany account for around three quarters of global robot sales.

“Digital information and automation will continue to drive the success story of robotics - it really is a transformation”, says Joe Gemma, President of the International Federation of Robotics. “It is driven in particular by industry 4.0, the industrial internet of things and services.”

IFR Press Releases

The irrepressible march of robots is revolutionising the workplace of the future. This was the subject of a discussion between five CEOs of the world’s leading robotic manufacturers, who were joined by experts from Boeing and Nestlé at the “World Robotics IFR CEO Round Table 2016” hosted in Munich.

High calibre participants from the USA, China, Japan, Germany, Denmark and Switzerland shared their practical knowledge on “Workplace 4.0 - The Role of Robots” in the light of the global automation boom.

IFR President, Joe Gemma, presented the latest statistics on the worldwide robot market and outlook until 2018 before the discussion started. Among CEOs of robot manufacturers, Dr. Phil Crothers, Senior Manager, Materials and Manufacturing Technology of Boeing and Daniel Magnin, Corporate Filling & Packing Technologies Manager of Nestlé were on the panel as users.

The CEO´s on the panel were:

  • Per Vegard Nerseth, Managing Director of ABB Robotics, Switzerland
  • Stefan Lampa, CEO, KUKA Roboter, Germany
  • Masahiro Ogawa, General Manager of Yaskawa Robot Business Division, Japan
  • Dr. Esben H. Østergaard, CTO and Co-Founder, Universal Robots, Denmark
  • Dr. Daokui Qu, CEO and Founder of SIASUN Robot and Automation Co. Ltd., China

Further videos are available on the IFR You Tube Channel.

IFR Press Releases

On 23 June 2016, the Executive Board of the world robots association IFR appointed Japanese Junji Tsuda as new Vice President of the International Federation of Robotics. Together with the President Joe Gemma, Tsuda will now manage the activities of the IFR.

In 2008, he already had this position for a period of two years. Presently, the 65-year-old is the Representative Director Chairman of the Board of the Japanese robot manufacturer Yaskawa Electric Corporation.

“I am extremely pleased to have Junji Tsuda at my side, a top-level and experienced representative of the robotics industry,” says Joe Gemma, President of the International Federation of Robotics. “Together we want to further strengthen the IFR as the world’s central contact for robotics and expand effective exchange of views. In particular, in these exciting times of the fourth industrial revolution international networking of all the stakeholders is becoming more and more important. Against this background the appointment of Junji Tsuda underpins the significant role of the Japanese market.”

Junji Tsuda was elected unanimously by the Executive Board. This body is composed of representatives of national robotics associations from all over the world, the IFR president and delegates of robot manufacturers and research institutes.

Junji Tsuda was pleased about his re-election: “I feel very honoured to be re-appointed as Vice President. I am looking forward to close and successful collaboration with the IFR President Joe Gemma and consequently with our members.”

Since 2013, Junji Tsuda has been the Representative Director Chairman of Yaskawa Electric. He has already been a member of the executive board of Yaskawa as Director and Managing Director since 2005. Tsuda began working for Yaskawa in 1976, after obtaining his university degree (B.S.) in mechanical engineering at the renowned Tokyo Institute of Technology. Since the 1990s, Tsuda has headed various America-related business units and has been active in the parent company since 2003.

IFR Press Releases

The worldwide sales of industrial robots achieved a new record number of 248,000 units in 2015. This represents a rise of 12 percent compared to the previous year (2014: 221,000 units). This sees the continuation of the global automation boom, which commenced in the wake of the financial crisis in 2009.

The sales figures for industrial robots have increased almost four-fold since that time (2009: 60,000 units). There is no end in sight to this growth trajectory: By 2018, some 2.3 million units will be deployed on factory floors - more than twice as many as in 2009 (1.0 million). So says the 2016 World Robotics Statistics, issued by the International Federation of Robotics (IFR).

Within the global markets, the positive sales figures are being driven by highly automated emerging countries, and by regions that are already highly developed economically. For example, in Europe the total sales figures for industrial robots in 2015 rose by ten percent to 50,000 units compared to the previous year. The strongest individual markets here are the three EU countries, Germany (20,000 units), Italy (6,700 units) and Spain (3,800 units).

Growth in America proved even more dynamic, with sales increasing by 15 percent to a total of 37,000 units. The USA heads the list with 27,000 units sold (+3 percent). An extraordinarily large leap forward in automation was registered in Mexico. There, sales more than doubled within one year to around 5,500 units. The reason underlying this development is the investments made in the automotive industry, the products of which Mexico exports to the USA and South America.

Asia is still the world’s strongest growth market. This region saw a total of 156,000 units sold in 2015 – a rise of 16 percent. With some 68,000 industrial robots sold, China alone surpassed the total market volume for Europe.

Growth in China (2015: +17 percent) saw foreign-based robotic manufacturers profit with a 69 percent share of the total market. At the same time, domestic competitors have, by now, significantly expanded their market share to 31 percent (2013: 25 percent). The robotics markets in South Korea (2015: 37,000 units) and Japan (2015: 35,000 units) continue to occupy second and third places in global sales behind China - followed by the USA and Germany. This top 5 countries account for three-quarters of the global sales of industrial robots.

Broken down into sectors, with the worldwide largest volume it is the automotive industry that holds the lead in automation using industrial robots. During 2015 some 95,000 units were sold in this segment - a rise of one percent. The sectors that posted the strongest growth in 2015 were the metal industry (+63 percent), the plastics and rubber industry (+40 percent), followed by the electronics industry (+16 percent).

“The wave of digital transformation and automation will continue to drive the robotics boom forward until 2018”, says Joe Gemma, President of the International Federation of Robotics. “Revolutionary developments in IT connected with all aspects of the Internet of Things, and new networked services are changing the producing industries fundamentally. Machines, logistics and production plants are merging into integrated cyber-physical systems. The aim is to use smart factories to work more flexibly, more cost-efficiently and more productively.”

IFR Press Releases

The twelfth IERA Award for robotics and automation goes to the collaborative dual-arm robot “YuMi®” by ABB Robotics this year. The name stands for “you and me - we work together” - since the robot was specially designed to work side by side with its human colleagues without protective fencing.

The International Federation of Robotics IFR together with the Robotics and Automation Society of the international association of engineers, IEEE-RAS, awarded the invention and entrepreneurship prize in Robotics and Automation (IERA) to ABB Robotics in Munich.

“All three finalists have presented us with pioneering robotics solutions,” says Joe Gemma, President of the International Federation of Robotics (IFR). “Our competition shows that a new era of automation has already dawned in which humans and robots work hand in hand.” “YuMi®”, the dual-arm robot by ABB Robotics, features numerous functionalities such as a vision system, a gripper or touch-sensitive sensor technology opening up new, flexible areas of utilisation in industrial assembly. The movements of its arms mimic those of human arms, making YuMi particularly suited for a flexible and agile production environment - for instance in the electronics industry or in the manufacture of watches, toys or automotive components. Its programming is customised to the individual user. In addition, YuMi® is fitted with a “safety-oriented behaviour function” for safe cooperation between human and machine.

“ABB convinced the jury by integrating three essential elements: a visual system, safe collaboration with humans and feeding of small parts to the dual-arm robot for assembly,” says Erwin Prassler, Vice President of the IEEE-RAS.

“Thanks to YuMi®, traditional approaches of manufacturing procedures and industrial processes will have to be reconsidered”, says Per Vegard Nerseth, head of the global business unit Robotics. “YuMi® will offer countless application options, putting us at the beginning of a new phase of industrial automation.”

The two other finalists: The Danish robot manufacturer Universal Robots came with “UR3” - a flexible and precise cobot (collaborative robot) for assembly tasks and the automated workbench. The Swedish company OpiFlex Automation presented a unique mobile robotics platform. The docking solution is compatible with standard industrial robots of different providers and sizes and allows quick change of place in the manufacturing workshop.

For the award ceremony on 21 June 2016 a joint forum by IFR and IEEE-RAS came together in the course of the 47th International Symposium on Robotics in Munich. The competitors who made it into the final round presented their innovative solutions to the plenary meeting. Afterwards a jury composed of top-ranking industry and science representatives decided on this year’s winner.

The Robotic Industries Association (RIA) announces the industry’s highest honor, the Engelberger Robotics Award recipients for 2016. The awards will be presented to Dr. Chia Day and Dean Elkins at a special ceremony on Tuesday, June 21st in Munich, Germany.

The Robotic Industries Association (RIA) announces the industry’s highest honor, the Engelberger Robotics Award recipients for 2016. The awards will be presented to Dr. Chia Day and Dean Elkins at a special ceremony on Tuesday, June 21st in Munich, Germany. The ceremony is held in conjunction with the joint 47th International Symposium on Robotics (ISR 2016) and AUTOMATICA, the International Trade Fair for Automation and Mechatronics.

The awards, named after the worldwide “father of robotics” Joseph F. Engelberger, are presented annually by RIA to honor individuals who have a significant impact on the robotics industry. Each recipient will receive a special plaque, commemorative medallion and a $5,000 honorarium. Beginning with the initial presentation in 1977, 122 industry leaders from 17 nations have now been selected for this honor.

“To continue the tradition of honoring Mr. Engelberger, we are privileged to add two well-deserving individuals to the illustrious list of people who have made a great impact on the robotics industry,” said Jeff Burnstein, President of RIA. “We’re delighted to present the Engelberger awards to Dr. Chia Day and Dean Elkins this year to recognize their achievements in robotics.”

Dr. Chia Day, who will be awarded in the application category, has been directly responsible for the installation of 40,000 robots over four years at Foxconn. This unprecedented volume of robots over a short duration represents a significant portion of growth in the robotics industry. More importantly, the deployment of these units in consumer electronics assembly is opening a new market for industrial robots. Dr. Day has been instrumental in directing this program and finding the optimal applications within Foxconn’s operations. His long history in robotics and industrial automation has proven essential to the success of the Foxbot program and the phenomenal growth of the Chinese domestic robotics market.

“It’s like a Lifetime Achievement Award, recognizing contributions to the field of robotics in a career,” said Dr. Day. “It’s an honor to be in the ‘Hall of Fame’ with other major recognized leaders in the field.”

Dean Elkins, who will be awarded for robotics industry leadership, is a Senior General Manager of Yaskawa Electric America, Motoman Robotics Division. Mr. Elkins’ long career of volunteer service with The Association for Advancing Automation (A3) includes serving as past chair on both the A3 and RIA boards as well as chairing committees for the automate show and RIA membership. He began his career at Motoman in 1989 as a Regional Sales Manager and went on to hold positions as Director Third Party Sales, Vice President, Standard Products and International, Vice President US Sales. Along the way, Mr. Elkins assisted in the incorporation of the Motoman subsidiaries of Yaskawa Motoman Mexico S.A. de C.V., Yaskawa Motoman Canada, Ltd., and Yaskawa Motoman Brazil. Prior to Motoman, Mr. Elkins worked for Reis Robots, Ellison Robotics, Cimcorp Par Systems and Hobart Brothers, starting his robotics career in 1981. Mr. Elkins graduated with a BA degree in Psychology from Southern Illinois University in 1979.

“The thought of even being mentioned in the same sentence as past Engelberger award winners is beyond incredible,” said Mr. Elkins. “This award is the pinnacle to what has been an incredible career in the robotics industry. Being recognized by my industry peers as someone worthy of an award associated with Joe and his legacy is completely humbling.”

IFR Press Releases

In 2015 the number of industrial robots sold worldwide surpassed the 240,000 unit mark for the first time. This corresponds to global year-on-year growth of 8 percent. The greatest demand was again registered by the automotive industry.

In 2015 the number of industrial robots sold worldwide surpassed the 240,000 unit mark for the first time. This corresponds to global year-on-year growth of 8 percent. The greatest demand was again registered by the automotive industry.

Robotics markets around the world continue to grow

In a comparison of global markets, China continues to exhibit the highest demand for industrial robots - sales rose by 16 percent. Despite the general perception of a “reluctant” investment climate, China extended its leading position as the number one sales market worldwide with unit sales reaching 66,000. This includes the units sold by local Chinese suppliers. Total sales in China, however, remained below the original IFR forecast of 30 percent. Demand in Asia, excluding China, remained at a high level with 78,000 units sold.
Sales of industrial robots in Europe rose by a record of 9 percent to nearly 50,000 units. Eastern Europe, with growth of 29 percent, proved to be one of the fastest growing regions globally. The number of units deployed in North America also broke a new record: in the U.S., Canada and Mexico a total of 34,000 units were sold in 2015 representing year-on-year growth of 11 percent.

Robot types and expanding application categories

Articulated robots are by far the most sold robot type. The diverse range of applications across which they are deployed, coupled with the broad range of models available, has helped to drive sales of this robot type across all regions to over 150,000 units in 2015 (CAGR 2010-2015 = +16 percent) - a new high.

CEO market forecasts

“In the age of Industry 4.0, the automotive industry is taking a leading role when it comes to flexible and state-of-the-art automation solutions and the direct collaboration between humans and robots”, says Stefan Lampa, President and CEO of KUKA Roboter. “Moreover, the demand for automation solutions is constantly growing in nearly all sectors. New markets are evolving where automation has not been a major topic until now. A particularly important market for us is the electronics sector: the electronics industry is confronted with an increasing number of new products, an accelerating pace of development and short product life cycles. Here too, flexibility is the be-all and end-all in the industry.”

“The growth on the world robotics market is being driven forward at a rapid pace”, says Olaf C. Gehrels, CEO of FANUC Europe Corporation. “Along the way, two technological milestones have been set: collaborative robots based upon standard robots equipped with tested and proven controllers have demonstrated their readiness for routine use in the industrial environment and the introduction of high-payload robots capable of handling items weighing up to 2,300 kg now allows the employment of totally new manufacturing concepts.”

“Global robot shipments in 2015 confirmed that these are very exciting times to be in the robotics industry”, says Per Vegard Nerseth, Managing Director of ABB Robotics. “As we move into 2016, the traditional drivers in our industry are now being complemented by the tremendous demand for solutions related to the Internet of Things, Services and People, all of which lead me to believe that this year will be yet another record year for all concerned.”

IFR Press Releases

In 2015, global sales of industrial robots increased by 8% to almost 240,000 units, another all-time high for the third year in a row. The automotive industry and the electronics industry continued investing in automation of their factories. Asia, in particular China, was again the main driver of the growth.

Dear Reader,

In 2015, global sales of industrial robots increased by 8% to almost 240,000 units, another all-time high for the third year in a row. The automotive industry and the electronics industry continued investing in automation of their factories. Asia, in particular China, was again the main driver of the growth. North America is also one of the front-runners in the global automation race. Robot sales in North America increased by 11% and in Europe by 8%. The prospects for the coming years are promising.

Digitalization of factories is a great challenge and opportunity faced by the manufacturing industry. More companies are exploring the advantages of digital connectivity. In addition, the human robot partnership will assume a key role in advancing intelligent production (Industry 4.0). Here, user-friendly robots as well as mobile robots are opening up opportunities for automation in various sectors.

The “Smart Factory” will be a focus of AUTOMATICA 2016 from 21 to 24 June. Automation and production-process innovation will be presented under the theme “Optimize your production”. A separate exhibition area, including a conference room and stage, will be dedicated to Industry 4.0.

At the next IFR CEO Round Table on 22 June 2016, at the AUTOMATICA in Munich, CEOs of major robot suppliers and robot end-users will have discussions on the topic: “Get ready for the digital revolution” - change of work and change of workforce.

Furthermore, the 47th International Symposium on Robotics (ISR 2016), from 21 to 22 June 2016 in Munich, will have the central theme: “Robotics in the era of digitalization.” At the ISR dinner on 21 June 2016, the prestigious Engelberger Award and the IERA Award will be presented.


Joe Gemma
IFR President

Technologies that make robot systems tailored to the needs of small and medium-sized productions: This is what the European Initiative SMErobotics will present at this year's AUTOMATICA in Munich. With the technologies developed and deployed in the project, companies benefit from a more efficient and flexible use of robot systems even in low-volume and high variant productions in applications as diverse as assembly, welding, or wood-working. 

March 2016
Technologies that make robot systems tailored to the needs of small and medium-sized productions: This is what the European Initiative SMErobotics will present at this year’s AUTOMATICA trade fair from June 21st to 24th in Munich. With the technologies developed and deployed in the project, companies benefit from a more efficient and flexible use of robot systems even in low-volume and high variant productions in applications as diverse as assembly, welding, or wood-working. Thereby, they can increase the throughput as well as the product quality.
Robots that can be setup with minimal efforts, which largely configure themselves and learn from human-robot collaboration offer a significant step towards a digitized production. Within the European SMErobotics initiative which is coordinated by Fraunhofer IPA, partners from research institutions and end users engage in joint R&D and demonstration efforts. Partners of the Consortium developed technologies for robots that simplify and broaden automation solutions in typical production scenarios of small and medium-sized enterprises (SMEs).
Currently, various robot systems for assembly, welding and wood-working are being deployed and tested at end-user sites. The result is that SMEs can combine novel robotics solutions with their customer-oriented production. At the trade fair, suppliers of automation equipment and manufacturing companies are invited to explore advanced technologies and solutions that enable flexible and personalised production scenarios.

Software as a key component

The project focusses on the development of several applications that allow a more cost-efficient use of robots even in the case of varying lot-sizes, product variants and throughputs. To meet flexibility requirements, the systems should be easy to operate by workers or specialists like welders with no or very little expertise in robotics. Both becomes feasible through novel means of intuitive user interaction and software based tools that enable automated process planning and that replace the so far normal but cost- and time-consuming programming.
Based on intuitive human-machine interfaces, robot programmes can be adapted without specific knowledge. The specialist of an SME can even evaluate the process in order to continuously improve the process quality. The processes are particularly robust due to the intelligent sensors of the robot system: They can precisely locate the work piece and compare it to the CAD data. Thus, the system detects tolerances or product variants of the work piece and can adapt the process if needed. Also, failures are treated automatically.

Innovative assembly solutions

So far, robot systems are rarely executing multi-part assembly processes because of their complexity and the high number of variants that have to be handled. The SMErobotics demonstrators using innovative technologies show how automation can be realized reasonably despite these challenges.
This includes for example a dual-arm robot system which can manipulate or assemble a work piece similarly to the human approach. Safety sensors enable the space-saving and easily reconfigurable use without fences. Another demonstrator presents the completely automated planning of an assembly process. Therefore, the system uses CAD data as well as knowledge databases that include geometric information about the work piece and the robot. The software uses a so-called skill-based programming: Specific functions are provided as programme building blocks. They can be re-used and re-composed as needed what substantially simplifies the programme adaptation to new variants.
All assembly solutions as well as nearly all other demonstrators are designed for safe human-robot collaboration. This is particularly interesting for SMEs with their fluctuating demands because tasks can be flexibly shared between human and robot. Furthermore, the exhibit RoboPAM shows a hybrid working place for the assembly of electronic devices. Human and robot can use the same tools.

Automated Welding

Besides assembly, welding is a typical process in SMEs. The cognitive and collaborative welding assistant CoWeldRob generates automatically collision free motions and is capable of welding manually prepared or inaccurate work pieces. This is due to 3D sensors and use of CAD data that allow the system to consider variations of the work piece or of the setting. It adapts the process in accordance to them and also takes parameters specific to the welding process into account.
For the welding of structural steel a cooperative dual-arm robot system has been developed. Similarly to a human-like approach, it can manipulate as well as process the work pieces. Both welding demonstrators have intuitive user interfaces so that welding experts can easily correct the process if needed. With these and further demonstrators SMErobotics shows a big variety of SME-specific solutions. These range from technology-components for system integrators and application developers to ready to use systems for SME and other end users.

Robot Investment Tool

The presentation of the online tool


completes the offer at the booth. End users can quickly and based on their individual information calculate the investment costs for a robot system. Furthermore, they have the opportunity to directly get in contact with system integrators. This provides an overview about the topic and a first basis of decision-making to companies which didn’t use robot systems so far.

Keypads and touchscreens make a wide range of different devices easy and intuitive to operate. A robot system developed by Fraunhofer IPA now allows device manufacturers to realistically simulate such loading in order to determine how durable their devices are. Typical applications of various devices can be simulated and automatically tested for any desired time duration.

Keypads and touchscreens make a wide range of different devices easy and intuitive to operate. However, the material of which they are made is subject to especially high loading through constant use and, at some point, becomes impaired in its functionality. A robot system developed by Fraunhofer IPA now allows device manufacturers to realistically simulate such loading in order to determine how durable their devices are. Typical applications of various devices can be simulated and automatically tested for any desired time duration.
Thousands of repetitions in the space of just a few days: while manually impossible, this can be accomplished by a newly developed robot system from Fraunhofer IPA. Whether it’s a matter of pressing keys, inputting data or using fingers or a stylus, e.g. for a signature pad - the robot system is capable of realistically simulating typical applications of human-machine interfaces. Such a system can test how long the materials human-machine-interfaces are made of and the associated functions remain fully functional. This provides device manufacturers with accurate knowledge about the quality of their products, which is, moreover, of importance for possible warranty claims. In addition, customers can gain accurate information on durability.

Robot imitates typical usage with its forces and path

For each device, the researchers at Fraunhofer IPA collaborate with the manufacturer and draw up the typical usage scenarios and loading profiles to set up the robot system. This includes, in particular, setting up the end effector, which is capable of holding a variety of tools - similar, for example, to a finger or stylus - and simulating various loading scenarios.
The programming of the robot system depends on features that describe the interaction performed by the user on the devices with human-machine interfaces. The researchers measure and process these features in authentic situations with test subjects. That could include the duration and force registered during the interaction. If the device under test is a touchscreen, it might also be relevant where the action is typically performed. This data is used by the scientists to suitably configure the forces and path of the robot. “We’ve succeeded in setting up the robot system so that it is capable of accurately simulating an application such as the use of a cash machine. Force sensors in a robot-guided finger-like end effector accurately measure and evaluate the force exerted by the user in a multiplicity of interaction cycles,” explains Milad Geravand, research assistant at Fraunhofer IPA. The accuracy of the tests is guaranteed by measuring systems as well as by regular checks by the employees.

Uniform quality of testing

“For a device manufacturer, automated testing offers the advantage that the performed conditions are always identical and the test scenarios are reproducible and therefore comparable. The motion of the robot system can be precisely controlled to guarantee that the testing is completely traceable and verifiable,” says Geravand. By the end of each intense test, device manufacturers are provided with a detailed report on the tests and results as well as with a brief summary, which can also be used as a reference for customers. The scientists are ready to employ this technology for life-cycle evaluation of human-machine-interfaces either in the labs at Fraunhofer IPA or on the manufacturer’s site by setting up the testing systems.

IFR Press Releases

The US economy is one of the front-runners in the global automation race. By 2018, the number of industrial robots sold to 2018 will, on average, rise by at least five percent per annum, to a new record of 31,000 units (2014: 26,202).

About one-half of these will be installed by car makers and their suppliers. Viewed according to robotic density - meaning the number of industrial robots per 10,000 employees - the US automotive industry, with 1,141 units, already ranks third in the world’s national economies after Germany (1,149 units) and Japan (1,414 units). So says the 2015 World Robot Statistics, issued by the International Federation of Robotics (IFR).

In the most recently published annual economic report of the US President to Congress, the White House underlines the central role played by robotics in the economic growth of the United States. Therefore as far as technology and innovation are concerned, it is the increased deployment of robots - alongside digital communications technology - that will prove to be the decisive factor of success in the robust growth of production in the USA. The economic experts see great potential in various economic sectors.

The automobile industry is currently displaying the fastest rate of modernisation within NAFTA (the USA, Canada and Mexico). 55 percent of the total demand for industrial robots comes from the auto sector alone. One fourth of these units is installed by car makers - the greatest demand is, by far and away found in the supply industry. The drive towards automation has been running at full pelt for five years now. This is enabling car manufacturers and suppliers in the US to supply the world’s largest domestic market and to produce the greatest number of cars and light commercial vehicles after China. The USA is witnessing very intense investment in the technical renewal of its domestic manufacturing, aimed at improving competitiveness and partly at regaining capacities from abroad.

The automotive supply industry is providing a strong impetus to the deployment of robotic technology in North America. Investments within NAFTA have increased by about 40 percent every year since 2010, and are forecast to continue rising in coming years. The primary drivers of industrial robot investments among automotive suppliers are new quality standards, more energy efficient production and new materials. Not to forget that foreign suppliers have been at work for a good five years now in expanding their production capacities with the aid of robotic technology, so that they can be closer to their crucial customer base.

“Clearly the Automotive industry continues to drive innovation in the automation arena and need for optimization, quality, adaptability and flexibility”, says Joe Gemma, President of the International Federation of Robotics. “The need from the OEM’s has filtered down to the supplier base to work on improved quality, flexibility and process optimization fostering the requirement for automation technologies to meet the demands as well as quicker deliveries and adapting to a dynamic environment.”

On June 21 to 24, 2016, up to 850 companies are going to display their solutions for the optimization of production processes and professional service robotics in six exhibition halls. AUTOMATICA in Munich. Highlight topics are Human-Robot-Collaboration, Industry 4.0 and Professional Service Robotics.

On June 21 to 24, 2016, up to 850 companies are going to display their solutions for the optimization of production processes and professional service robotics in six exhibition halls. AUTOMATICA

in Munich is one of the biggest robotics shows in the world and one of the leading technology platforms for automation. It is THE place to be for decision-makers, manufacturers and developers, for providers and users of robotics and automation.
Highlight topics are Human-Robot-Collaboration,

Industry 4.0 and Professional Service Robotics


See all technologies

AUTOMATICA 2016 offers a birds-eye view of technological development drivers in this innovative sector:

Robotics, machine vision, integrated assembly solutions

and professional service robotics are core exhibition areas and special topics at the trade show.
Robots, which are mobile and collaborate with people, are indispensable in a networked production world that can react flexibly and fully automated to changing needs. Industry 4.0 and the resulting applications are a chance to establish Europe as a technology leader and pioneer. AUTOMATICA will show how the automation industry is facing the challenge of this technology trend.

One trade fair - many industry sectors

The global industry gathering offers the opportunity to gain information about new developments, cultivate business contacts and prepare investments in the automation industry. Plus, AUTOMATICA shows the complete spectrum of products, systems and solutions for almost every automation project and therefore appeals to users from the most diverse sectors of production such as automotive and metalworking industry,

medical, pharmaceutical, food and plastics


The breakthrough of smart robots

The exhibition area

“Professional Service Robotics

” in Hall B4 will be once more a source of inspiration. Robots have left their protective cage and now work closely with the people. Regardless of whether mining or agriculture, construction, forestry or cargo handling, whether in soil or underwater, in the air or in space: service robots relieve people not only of dangerous work, but they also provide better quality of life. Human-robot collaboration can ensure workplace ergonomics and better working conditions.

Industry 4.0

Parallel to AUTOMATICA the new platform


will take place in Hall B4. The new embedded trade fair for digitization of production concerns intelligent, digitally networked work environments. The IT2Industry will demonstrate the link between automation and information technology and focus on digital transformation in production, new opportunities for users and suppliers of robotics and automation as well as “Industry 4.0 in Practice”.



is the new marketplace of innovation at AUTOMATICA 2016. With the STARTUP WORLD Market, the STARTUP WORLD Award, and the STARTUP WORLD Stage, it is set to offer a unique matchmaking platform to thriving startup companies, investors, and other industry entities while showcasing product innovations in automation and service robotics.

IFR Press Releases

The automation of the fourth industrial revolution is accelerating: By 2018, around 1.3 million industrial robots will be entering service in factories around the world.

Global robot density above average - European Union (Germany, Sweden, Denmark, Belgium, Italy, Spain, Finland, France, Austria, Netherlands, Slovenia, Slovakia, Czech Republic, United Kingdom), Asia (Republic of Korea, Japan, Taiwan), America (USA, Canada).

Frankfurt, 25 February 2016 - In the high-revenue automotive sector, global investments in industrial robots increased by a record-breaking 43 percent (2013-2014) within one
year. Viewed on a cross-sector basis, the international market value for robotic systems now lies at around 32 billion US dollars. So says the 2015 World Robot Statistics, issued by the International Federation of Robotics (IFR).

The robotic density figure is a key performance indicator for gauging the current degree of automation within the international markets: For example, the average global robotic density in producing industries lies at 66 robot units per 10,000 employees. A total of 21 countries have an above-average robotic density (Fig. 1). More than one-half of these highly automated countries are located in the European Union (14 countries). Then there are three Asian economies (South Korea, Japan, Taiwan), as well as the USA and Canada.

The current global leader in industrial robotic automation is South Korea. In this instance, the robotic density exceeds the global average by a good seven-fold (478 units), followed by Japan (314 units) and Germany (292 units). At 164 units, the USA currently occupies seventh place in the world.

At 36 units per 100,000 employees or about half the global average figure, China is currently in 28th place. Within the overall global statistics, this is roughly on a par with Portugal (42 units), or Indonesia (39 units). However, about five years ago, China embarked on a historically unparalleled game of catch-up aimed at changing the status quo, and already today it is the world’s largest sales and growth market for industrial robots.

Never before have so many robot units been sold in one year as were sold in China in 2014 (57,100 units). The boom is continuing unabated in line with the forecasts: In 2018, China will account for more than one-third of the industrial robots installed worldwide.

“The robotic boom is laying down an important milestone in the realisation of the fourth industrial revolution”, says Joe Gemma, President of the International Federation of Robotics. “With their digital interfaces, industrial robots can be seamlessly integrated into the networked structures of smart factories. This is a benefit exploited by highly automated economies and by countries adopting a new industrial focus. Further impetus is coming into the form of the technological breakthrough in human-robot collaboration: Robotic workers will in future be found working hand-in-hand with human staff, helping to replace traditional, rigid production processes with flexible structures.”

Case Studies Industrial

Here maybe a deodorant, probably even try the new shampoo out of television advertising - the drugstore customers like strolling through the ranks and rummage through the shelves after drugstore products.

February 2016

Oliver Sauermann, Head of Industrial Engineering of Otto Kind GmbH, manages projects of systems-new procurement and accompanied changes in processes in manufacturing at Otto Kind. He gives the answer to the above question: “We from Otto Kind GmbH are a manufacturer of shop fitting in drugstores as well as in the food- and DIY-sector.” In his shopping experience a customer, even if not directly seen, confronted every day with products of the Otto Kind GmbH. In addition to setting up the stores, the company is also active in the establishment of factories and manufactures cabinets, drawer cabinets and ergonomic workstations. With 250 employees at its headquarters Dümmlinghausen / Gummersbach and several European sales offices, the Otto Kind GmbH faces the challenges of the market: “The establishment of shops is always a complex issue. Each retail chain has its own ideas of how he wants to set up his shop. A high degree of customizing is required, which we can attend to with our product portfolio.”

During the production of shelves of Otto Kind special shelf feet must be welded out of a pipe. This module consists of five individual parts. Because of a sharp increase of production in 2013 a robot-automated welding process for this module was an interesting option for Otto Kind: “In addition to the increased number of pieces the idea of robotic automation came also up due to a not yet optimally weld quality of our components.” Before the company initially worked with relatively few jigs, however in large series production. An older, highly specialized welding machine in the company was only able to prefabricate two different types of products, so that the scope for further assemblies was extremely limited.
In order to improve not only the optical quality of the welding seams but also to ensure a consistent quality of the high production volume, welding equipment concepts with Panasonic Robot & Welding were elaborated. Alexander Thomas, Key Account Manager of Panasonic Robot & Welding, indicates the former challenge of robot automated welding project of Otto Kind GmbH: “The component has very difficult to reach welding positions where an extremely low-spatter welding is required. Our TAWERS technology enabled the customer to eliminate spatters largely - even on difficult positions.” Mr. Sauermann also confirmed that the severe reduction of rework is a major reason for the acquisition of the system of Panasonic Robot & Welding. The foregoing welding tests in the technical center in Neuss have been able to prove this. Otto Kind GmbH decided to invest directly in two robot automated welding systems.

The first welding machine was equipped with a turntable, a TA-1800WG robot and the TAWERS technology. This system has a peak width of 1600 mm and is for the user due to the rotation changing table more comfortable to use: “The user can work parallel to the welding process. He is able to put the application into the jig without having to do a lot of moving expenses. This compact system is ideal for the majority of our applications.” 60% of the components from the Otto Kind GmbH can be welded with this solution. Components up to 2500 mm in length are welded on the second Panasonic Robot & Welding plant. This plant consists of an H-frame, TA-1900WG3 robots TAWERS technology. With a top range of 3200 mm the major components of the company could be welded easily. The tube foot was welded in the past with a cycle time of 1.5 minutes while the quality of the welding seam was volatile.

Today, the tube foot is welded in a cycle time of 22 seconds and additionally with an excellent repeatability. Next to the huge improvement in the weld quality due to repeatability and spatters reduction the production efficiency could be highly improved. For the Otto Kind GmbH it is now possible to weld a lot of modules completely finished in one clamping. Due to the easy accessibility of the robot it is possible to weld almost without reworking. The purchase of the Panasonic solution had a huge impact on the quality management of the company: “Our customers are thrilled! Complaints are not an issue for us.”

The protective enclosures of the two welding systems from Panasonic Robot & Welding were designed by the Otto Kind GmbH from existing systems. The company established a sheet metal structure which is acoustically effective. Through a special perforation in the rear wall the occurred production sound inside the enclosure is not absorbed but broken in the production area. “The resulting sound in the cabin remains in the cabin” indicates Mr. Sauermann and adds that such housing in a manufacturing environment, in particular for employees is critical: “To design an employee-friendly work environment is to our company of great importance.”

Mr. Sauermann sums up that the cooperation with Panasonic Robot & Welding is very success promising: “The planning phase was exemplary! Panasonic Robot & Welding was not too pushy, but not too cautious - just as it should be.” He emphasizes the rapid flow of information and in particular the service care they provide. For him, the reliability of a company is the most important factor: “All discussed concerns with Panasonic Robot & Welding are just arrived, as they were promised.”

IFR Press Releases

We are in the middle of one of the most exciting times in the history of Robotics and the automation industry. We continue to see explosive growth with 2015 topping 2014 by 15% and establishing a new record in Robot sales worldwide.

Dear Reader,

We are in the middle of one of the most exciting times in the history of Robotics and the automation industry. We continue to see explosive growth with 2015 topping 2014 by 15% and establishing a new record in Robot sales worldwide. With the technology advances and industry innovations, Robotics has become more mainstream in small and medium size manufacturers which is allowing them to compete in broader markets. Additionally, human collaboration with Robotics continues to make advancement in traditional markets as well as developing new applications for automation solutions.

Many of the recent breakthroughs in technology were on display at the iREX Show in early December in Tokyo, Japan. The iREX Show enjoyed record attendance with over 120,000 visitors.

With this excitement and growth in the Robotics industry, the IFR is also expanding with some additional associations and manufacturers joining this year. The most recent addition is the newly formed RAR from Russia. We welcome them as well as the other new members joining in 2015.

Sadly, we say goodbye to one of the true giants of our industry. Mr. Joseph Engelberger, the “Father of Robotics,” passed away on December 1, 2015. The industry honors his contributions by awarding the prestigious Joe Engelberger Award each year recognizing other industry contributors that emulate his creativity and leadership. His vision and life’s work will continue to inspire many generations to come.

2016 looks to continue the energy and excitement with multiple events that will have IFR or IFR member associations participation.

Major events in 2016

  • Automatica 2016 (21-24 June 2016), Munich
    • IFR CEO Round Table at Automatica, 22 June 2016
    • ISR 2016 - Robotics in the Area of Digitalization! (21-22 June 2016)
    • Joseph Engelberger Award 2016 (21 June 2016)
    • IERA Award 2016 (21 June 2016)

  • CIROS 2016 (6-9 July 2016), Shanghai
    • IFR-CRIA CEO Round Table at CIROS

  • INNOPROM 2016 (11-14 July 2016), Ekaterinburg

Looking forward to another record year in 2016.


Joe Gemma

Case Studies Industrial

The family company Attl a spol. s.r.o. Továrna na stroje (Machinery Factory) has expanded its product range into automotive segment.

December 2015

Challenges and Needs: For one of the Volkswagen suppliers, the company started to produce stainless steel tubes used in heat exchangers in EGR valves of modern combustion engines for both passenger and commercial vehicles, whose main task is to reduce exhaust emissions.

A new production line was supposed, in accordance with the company’s original plan, to directly produce the final product, however, a test run proved that one more operation is necessary - rounding the edges of the manufactured tubes. In the first phase, the manipulation with the semi-finished product, i.e. inserting the tubes into an edge rounding machine, was carried out manually by human operators, at the same time, however, the company began to intensively seek an automated solution for this monotonous operation.
The initially designed mechanical solution proved to be highly unreliable, therefore a decision was made to purchase a robot. Having no previous experience with industrial robots, the company was offered the opportunity to try an UR5 robot, provided by the Liberec company EXACTEC, the Universal Robots distributor.
“Although our company manufactures and supplies its customers with tools to automate manufacturing, we have not had the opportunity to work with industrial robots before,” says Tomas Attl, sales director at Attl a spol. s.r.o. Továrna na stroje. “Then we had the robot arm from Universal Robots borrowed for a few months, but even after a couple of days it was absolutely clear that the use of light industrial robots is exactly the right direction to follow to modernize our operation in the future.”

Robot Tasks: The task of the three UR5 robot arms, deployed on manufacturing lines of stainless steel for the exhaust gas coolers in EGR valves, is to insert the semi-finished tubes into an edge rounding machine. One operation cycle takes the robot approximately 2 seconds, i.e. 30 tubes are manufactured every minute. All three robots work on average 20 hours a day, 6 days a week.
The reliability level of UR5 robots is very high. During almost two years of operation there was only one single defect in one of the robot arms. The contractor replaced the damaged joint under warranty and in less than 24 hours after the defect was reported. During regular service operations, the robot task is taken over by human operators. The company neither plans nor carries out any extraordinary shutdowns of its robots and it does not keep any spare parts in stock. In this, the company simply proceeds according to the manufacturer’s standard service instructions.

The initial setup of robot arms was performed by EXACTEC programmers; any potential future configuration of robots can be carried out by a trained company technician.
Selected Robots and Parts: 3 × UR5

Implementation and Training: EXACTEC provided Attl a spol. s.r.o. Továrna na stroje with one UR5 robot for several months of testing. Subsequently, EXACTEC has deployed three UR5 robot arms, tested the operation and trained one of the company engineers in operation and configuration of the robot. The gradual training of all employees working with the robot then took place over three days. In total, the implementation of the UR robot arms in the company’s production lines took 4 weeks.

Initially, EXACTEC arranged a demo operation for Attl a spol. s.r.o. Továrna na stroje, during which the cooperation between the robot and the production line was fine-tuned and during which a special gripper for handling the product was prepared. The subsequent implementation of the UR robots was carried out without any problems.
After the implementation, several consultations with EXACTEC specialists took place, however the operation and maintenance of robots had already been taken care of by trained company employees.

“We were pleasantly surprised by how quick and easy was the implementation of UR robots in our production. The robots work within the declared precision tolerance and, except for one minor defect, the operation have been smooth. And our customer is satisfied with the robotic solution as well. In the automotive segment operations, industrial robots are nowadays a standard, expected also from subcontractors,“ says Tomas Attl.
Results & Advantages:
• Three light UR5 robots have replaced human operators in carrying out monotonous manual labour at Attl a spol. s.r.o. Továrna na stroje.
• The robots on the production lines work 20 hours a day, 6 days a week, without any required downtime or service outages.
• Any programming tasks and the regular maintenance of the robots is taken care of by the trained engineer and other company employees.
• The UR Robots have proven to the company its usefulness, efficiency and rapid return on the their acquisition investment. The company owners are now considering deployment of UR robot arms in another 5 workplaces.

Case Studies Industrial

A mobile fleet of Universal Robots will now receive daily work orders to solve ever-changing tasks with high mix - low volume electronics manufacturer Scott Fetzer Electrical Group (SFEG) in Tennessee.

December 2015

The collaborative robots have optimized production by 20 percent, taking over monotonous and potentially hazardous tasks from employees now reallocated to more rewarding jobs.

When the first UR5 robot arrived at Scott Fetzer Electrical Group (SFEG), it was quickly named “Waldo”, inspired by the popular “Where’s Waldo” books featuring a friendly fellow that keeps appearing in new places amongst crowds of people.

“One day Waldo would be bending sheet metal, the next day he would be performing pick and place tasks, and the third day we would take him to Manufacturing Day at the local high school,” says Matthew Bush, Director of Operations at SFEG that manufactures a wide range of electrical motors and components.

The fact that the Universal Robot are re-deployable and can operate with no safety guarding right next to humans is a radical break away from traditional industrial robot that usually stay hardwired behind safety guarding, fenced off from people. The UR robots are a new type of robot classified as collaborative due to their interactive design that makes it easy to set them up for a new task as well as their built-in safety system that enables the robot arm to automatically stop operating if it encounters objects or people in its route.

Traditional robots a challenge

Matthew Bush came across this new automation solution as he was looking for ways to make SFEG more competitive on the global scale, while taking more advantage of existing machinery.

“One of our biggest challenges is we’re a high mix-low volume producer, most of our lines don’t run all the time, so trying to find a way to put robots on the line in the traditional sense was a very big challenge,” says Bush, elaborating on his goal:

“We wanted to build a mobile, flexible robot force. The only way we would accomplish this was with a collaborative robot. We only saw a couple of offerings and the UR robot was the only robot that we thought could do the job. It’s got the speed and precision of a standard industrial robot with the ability to move around and work next to humans.”
SFEG placed the UR robots on pedestals with wheels and is now building the fleet of mobile UR robots deployed throughout the sheet metal department, integrating them in the entire production cycle from cutting the initial blank on the blanking press to forming, folding and final assembly of the electrical components. Additional robots are planned to help tend the turret presses and press brakes.

“We want to have robots standing by, waiting for a job to do. When the staff arrives in the morning, we’ll have work-orders printed for employees to wheel the robots over to the tasks at hand that day.”

The UR robot as a pace setter

General Manager at SFEG, Rob Goldiez explains how productivity and consistency on lines with UR robots improved:

“Before we had the Universal Robots on our transformer line, we averaged about 10 parts per person per hour, that’s up to 12 parts per person per hour now, so about a 20% increase having a pace setter with the Universal Robots working hand in hand with our people.”

The UR robots working the motor field line are a UR5 and a UR10 robot named after their payload in kilos. The UR5 is placed at the end of the line right next to an employee that hands the robot a motor field part. The UR5 picks up the part, puts it in a holder, picks up a wire cutter to trim the wires, and then places the part for the UR10 robot to pick up and place on a conveyor for final assembly.
The two UR robots work in tandem and communicate their position to each other through Modbus socket connections. “We can interlock multiple robots together and read through Modbus the TCP connections and robot status. We can also pass information along to other software packages, and collect data. It opens up a lot of doors to do a lot of things we’re just now beginning to look at,” says Principal Engineer at SFEG, Jamie Cook.

Implementation time reduced up to 50%

Before the UR robots arrived, he was a little “antsy” about the new collaborative technology, having not programmed cage-free robots before. A UR robot comes with a touch screen pendant that all programming is done through. Directing the robot arm can be done either through arrow keys on the screen, or by simply grabbing the robot arm and “teaching” it the desired moves between waypoints. That eliminated the structured text programming Cook usually had to code when working with traditional robots.

“It was really easy to learn and it went much smoother than I anticipated. I did it with minimal training just looking through the operator manual and following the intuitive user interface. I would say it took a third to half of the implementation time out of it based on previous experiences I’ve had.”

Collects data in life cycle testing

One of the new applications now using the UR robots for data collection is in the live testing of new designs, where the small motor manufactured at SFEG is placed in the customer product.

“We then use one of our mobile robots to turn the product’s switch on and off, running it for a minute on, 30 seconds off, for the next 400 hours. It’s a quick way for us to perform life cycle testing. We didn’t have to set up a lot of equipment; the initial program took us only about 5 minutes to create,” says Matt Bush.

The robot collects data pertinent to the test such as max amperage, average amperage and the number of cycles completed and transmits that data to a data storage.

“It’s enabled us to actually engage our customer in the testing as well, they’re excited to see us use new technology to push our design faster into production. It gives us an advantage over our competitors thousands of miles away in low-cost source countries. We’re now winning orders against Chinese competitors and bringing back work that used to be sourced in China as well.”

“Let the robots get carpal tunnel”

As SFEG looked for tasks to automate, eliminating monotonous and potentially dangerous tasks was the number one priority. Another task now handled by the mobile UR robot fleet is filling epoxy into circuit boards.

“In the past, employees would make up a big batch of circuit boards and they would stand there and manually fill them with two-part epoxy and send them down the curing line. Today, the robot does that all day long enabling us to go to a one-piece flow,” says Bush.

“This is an example of an application that would not happen with a stationary robot as we have to move the robot in and out of the cell every day to dismantle the epoxy machine and clean up the cell,” says the Operations Director, who also emphasizes the safety hazards now avoided on the motor field line by having a UR robot handle the wire cutting.
“It’‘s a potential carpal tunnel syndrome application cutting about 16,000 wires a day by hand. So we thought that was a great place to put robots - let them get carpal tunnel!”

Saved by “Thelma and Louise”

The wire cutting UR5 working in tandem with the UR10 has been embraced by the staff that named the new robotic team “Thelma and Louise”. According to Line Lead at SFEG, Sebrina Thompson, the naming arose when personnel first thought the robots were driving them off a cliff.

“When the robots first came out on the floor, employees were very anxious as they thought they would be replaced. But the robots handle a lot of tedious tasks for us now, enabling us to focus on more challenging jobs. My colleagues are constantly trying to find out where we can put the next robots,” says the Line Lead, who also enjoys operating the UR ro

“I was surprised how simple it was. If you can work a smart phone, you can pretty much work these robots.” SFEG has reallocated employees that used to handle tasks taken over by robots to other production areas where the company has seen growth or to fill holes due to natural attrition.

“We’re seeing about 1 to 1 movement of people from where we put in a robot to allow to move person to another area of the business. We have 14 robots from Universal Robots right now and as we have all those implemented, we expect to be able reposition 14 employees. It has allowed us to be much more flexible as a manufacturer,” says General Manager Rob Goldiez.

Next: Robots on armature line and at varnish oven

One of the next robot tasks currently being developed at SFEG is putting c-clips on armatures. At the varnish oven, two UR10s will be loading and unloading baskets with motors. One UR10 is already deployed at the end of the varnish conveyor, working as a simple transfer station, moving baskets between lines.

“The reason we chose to use a UR10 there wasn’t because it was the most effective way to do it. We had an extra UR10 sitting idle; it was very simple to integrate, and it gave us the ability to completely control the conveyor line throughout the day. It saved us money as we didn’t have to go out and spend another nine to twelve thousand dollars on another transfer station,” says Bush who is currently experiencing a payback period between 12 and 14 months on the UR robots.

“We’re looking at everything we’re designing now new to make sure we can assemble it with a robot. If we can’t put that together with a robot, we’ve got to go back to the drawing board and try again.”

The UR robots at SFEG were purchased through distributor Cross Automation covering the South Eastern part of the U.S. where Sales Engineers Karl Bentz is experiencing an increased demand for the collaborative robots.

“We’re seeing a lot of interest from tier one & two automotive suppliers with applications that replace some of the ergonomically unfavorable tasks performed by employees. The medical device industry here is also starting to use this new type of robots for tasks such as laser marking and assembly. As was the case at SFEG, once we sell one UR robot, the customer starts realizing what other tasks they could automate.”

Every day, about 10,000 people turn 65 in the USA. Neurological diseases such as stroke or Parkinson will become more common diseases, unfortunately leading to autonomy losses, hence healthcare system costs` increase. It is a serious subject to handle for our ageing societies in order to find new cheaper, faster and better ways to rehabilitate.

October 1st, 2015 - Rennes (France) - Every day, about 10,000 people turn 65 in the USA. Neurological diseases such as stroke or Parkinson will become more common diseases, unfortunately leading to autonomy losses, hence healthcare system costs` increase. It is a serious subject to handle for our ageing societies in order to find new cheaper, faster and better ways to rehabilitate.
Robotics is a promising solution.

The ROBO-K is a robotic gait training device that makes the patient walks safely and autonomously. By helping the patient to physically walk around, the robot helps the physiotherapist to focus on the patient’s care and motivation. The physiotherapist chooses on different modes how the device helps him to implement the rehabilitation protocol. He can choose to be only present to motivate the patient, or on the contrary to be more active and control the trajectory, provided with the appropriate feedback. In any case, the physiotherapist stays in charge of the rehabilitation process, the robotic device being a help for what is difficult to do, tiring and repetitive (preventing the patient from falling for example).

In the course of last September, the two Robo-K demonstrators have left the premises of BA Healthcare for the Functional Rehabilitation Services of the University Hospital of Rennes for the first one and of Kerpape for the other one.

After three years of work, this delivery marks the beginning of a new phase for the ROBO-K team: clinical trials and acceptability studies. Over a period of five months, this phase led by the CRPCC LAUREPS (psycho-sociology laboratory of Rennes 2) will study how the device fits into the therapeutic process, how practitioners and patients have the new machine in hands… and how it improves their condition.

Both machines made strong impressions on their arrival, arousing curiosity. The first stage consisted in mapping the service, which will enable practitioners to program tracks on which the patient will work by his own. The robot did well, sneaking between the chairs in the corridors. Its holonomic trajectories allow it to pass by the tiniest spaces with much ease and make everybody forgot its large size.

The entire BA Healthcare team waits with much enthusiasm for the first feedbacks of the patients and practitioners.

Brief overview of ROBO-K project

ROBO-K is a 3-year collaborative project, funded under the FUI13 and whose objective is to design, build and test a mobile robot for gait rehabilitation.
Bringing together BA Systèmes, CEA List, the University Hospital of Rennes, the CRPPC/LAUREPS, the CMRRF of Kerpape and MOVEA, this applied research project is intended for patients suffering of walking deficiency from neurological origins (stroke, MS, Parkinson, etc.).

The ROBO-K project is based on the collaboration between user and technical centers organized around a socio-psychological approach to apprehend the issue of robotic rehabilitation under the specific angle of use. The objective of this approach is to think the device as a tool to be implemented into the rehabilitation process and not just as a new technical object to master.
The two realized demonstrators which start an evaluation phase led by the medical partners will enable to validate the relevance of the ROBO-K project´s assumptions.
The partners involved in the Robo-K project:


Thanks for the offer, but no thanks, was the final answer to several Chinese, European and US investors, who in 2015 became aware of the obvious potential in up-and-coming Danish robot manufacturer Mobile Industrial Robots.

Only a year ago, MiR launched its innovative, flexible, mobile robot MiR100, and in step with MiR’s steep growth where new countries were conquered each month, the company received a growing number of inquiries from potential investors. Public and private foundations also offered their services, and all of them were thoroughly considered. But none came out of the cold.

Instead, the choice fell on a purely Danish team consisting of five private investors, who will invest a total of almost DKK 10 million of their own money in MiR. The sale of MiR robots accelerates much faster than management had dared hope. The intense expansion, employee growth and continued product development require a lot of working capital. Hence, on Friday 11 November at 1 pm, five Danish investors put their signatures on the two-digit million investment.

Management and founder hold the majority

CEO Thomas Visti has chosen to stake a multi-million sum from his own account on MiR. Together with the founder, he still controls more than 50% of the ownership interest. The aim of the capital injection is to ensure that the promising export business has the required growth capital at its disposal to ensure and extend its solid lead in the world market for mobile robots. Competition in the booming global robot industry is intense, and it requires financial muscle to maintain the role as front-runner. But MiR did not go for just any kind of money. It had to be “clever money” from experienced people with deep industry insight, relevant networks and personal commitment to the company. It is rare in Denmark that private investors decide to invest such a large amount out of their own pockets.

“After having been in dialog with a number of large and interesting investors, who each, of course, had their own agendas and wishes for strong influence, I stopped and thought: What is really important to a growth business? To be in control yourself and have freedom to act fast and in time! Consequently, I explored the possibilities among the existing owners, the board of directors and the network around MiR, and here a picture quickly emerged of an obvious, strong team of dedicated Danish investors. As I see it, we now have the required growth capital as well as the right competencies among the board members and owners in relation to where MiR is now. We have not finally decided whether additional investors should be involved at a later time,” says Thomas Visti, CEO.

Designed for modern production

One of the most prominent members of the new investment team is CTO Esben Østergaard, founder of Denmark´s largest robot manufacturer, Universal Robots.

“Esben Østergaard`s trust in Mobile Industrial Robots means a lot to the company. It sends a strong signal to the market that such an innovative entrepreneur can see large opportunities in our technology and product. Mr Østergaard also has very valuable personal experience with the entire process from research to commercialization and construction of a global organization. Mr Østergaard will not become a member of MiR’s board of directors, but invests his high credibility in our business and follows it from the sideline,” says Mr Visti.

Esben Østergaard’s own explanation of his investment is that he sees a considerable market for MiR’s mobile robots, which the industry has also started to integrate with robot arms from Universal Robots.

“MiR100 creates mobility, and this matches very well with general developments in robot technology. The trend goes from large, heavy machines in cages to modern robots that move around on their own and interact with people and help them become more productive,” says Mr Østergaard.

MiR´s founder Niels Jul Jacobsen, who has many years of experience with robot research and development, has already put everything at stake to make the vision behind MiR reality, but he, too, has now chosen to inject further capital.

“I do it, because I can. The explosive and positive development that MiR has undergone in 2015 means that the potential for our mobile robots is even clearer, and consequently, it is only natural that I continue to invest in the building of MiR. In this connection, I’m happy that we’ve been able to involve two new private investors, who can also contribute positively to MiR via their own knowledge,” Mr Jul Jakobsen establishes.

Torben Frigaard Rasmussen, who was recently hand-picked as the new chairman of MiR´s board of directors, is one of the two new investors mentioned by Mr Jul Jakobsen. Mr Frigaard Rasmussen has previously been involved in companies such as E-soft, Worldticket, Umbraco and E-conomics.

“I think that MiR can take part in the large transition of tasks that are moved back from the East and the general trend of more automation in all industries. At the same time, the Internet of Things is growing massively and will lead to many solutions based on close cooperation between humans and machines, of which mobile robots will obviously also form part. In addition, MiR is made up of a very competent and experienced team, Mr Frigaard Rasmussen explains.

Third investment from investor

As early as in fall 2014, business angel Søren Michael Juul Jørgensen injected a large amount into MiR, and since then his belief in the potential of MiR has only grown. Now he chooses to reinvest.

“To me, the investment is an absolutely natural part of a process that started when I joined the board about two years ago. The investment is my third within a relatively short period of time, where the company has seen dramatic growth. I`m pleased that Torben Frigaard Rasmussen and Esben Østergaard can also see the potential in MiR, and I welcome them as owners,” says Mr Juul Jørgensen, who has built a successful business from scratch and made it a growth success, namely Microflex.

All else being equal, MiR could have raised even higher amounts from other types of investors than private ones, but in CEO Thomas Visti’s eyes, it is not necessarily an advantage to swim in large amounts of capital as an entrepreneur.

“In Denmark, we`re used to modest circumstances. It actually helps us become extremely focused and specific when we develop products and new growth businesses,” Mr Visti says.
According to plan, MiR is to start being profitable from 2017 when sales are expected to reach DKK 50 million.

Case Studies Industrial

It was a first appearance as a “New Talent” at the DMY International Design Festival Berlin 2015 not only for Israeli-born art student Jon McTaggart, but also for a MOTOMAN handling robot.

December 2015

With the support of YASKAWA, the innovative designer uses the robot as a 3D printer, enabling him to create complex shapes from a variety of materials.

Under the title “Artifacts”, McTaggart consciously explores the dichotomy between the uniqueness of a work of art and the possibilities of technical reproduction. The result consists, for example, of shells and other geometrical shapes which are based on digital designs and made of individual materials. The designer focuses primarily on sand and earth, which to him represent a specific place at a specific point in time.

In his search for a technically feasible solution for shaping the sand and fixing it in the desired form, McTaggart first of all experimented with different 3D printers. However, they were unable to cope with the heavy material. The solution finally proved to be a MOTOMAN MH250 from YASKAWA. From his point of view the combination of highest precision and flexibility with a high load-bearing capacity spoke in favour of this model. A small MOTOMAN MH6-10 was used for demo purposes in Berlin.

A dosage system positioned on the robot manipulator injects a food-safe adhesive into the sand mass exactly at the predetermined points. The young artist programs the in part highly complex geometries using commercially available 3D software. The data is transmitted to the robot control via an interface.

Case Studies Industrial

Valk Welding has delivered two similar robot configurations for the automation of the welding and glueing process of Picanol, one of the world’s largest weaving machine manufacturers.

December 2015

According to Senior Buyer & Manufacturing Manager Geert Tanghe, it was mainly based on the Valk Welding technical know-how and flexible approach that Picanol now has a flexible welding robot system and a highly innovative robot solution for the automation of the gluing process supplied by Valk Welding.

Picanol was looking for a robot integrator for the automation of its glueing and welding system. In an extremely lean & mean and highly automated production system the welding was still carried out partially manually, and the transport rollers were still glued entirely by hand. Geert Tanghe: “Until recently glueing was a traditional process that was in sharp contrast to the rest of the production process. We wanted to introduce a new glueing procedure and improve quality by automating the process. For the welding of the construction parts and the transport rollers we were looking to partially replace and extend the existing welding robot. Valk Welding is a well-known name in the region, also at the suppliers of our plate and sub-components. We asked Valk Welding and a couple of other robot integrators to offer us a turnkey solution to our problem.”

2 Robot systems on an H-frame

The design of the robot configuration delivered by Valk Welding for the robotised welding of transport rollers and traverses (stabiliser tubes) with dimensions of 1.5 to 5.6 metres in length corresponds to the configuration for glueing. Both systems consist of a robot on an H-frame (fixed torsion frame with positioners on 1 top side and 2 adjustable counter bearings) in a special design. Both robots are Panasonic TA-1400 models.

Welding robot system

In the welding robot system supplied by Valk Welding a Panasonic TA-1400 welding robot moves on an integrated 6m track to weld the tubes and transport rollers in lengths up to 5.6m on 2 jig stations. The positioners on both sides have a fixed position and are equipped with adjustable counter bearings. That makes it possible to weld both the smallest and the largest lengths of the transport rollers and stability tubes just on one single system. Valk Welding also saw to the development and delivery of the welding jigs and the programming of the welding robot for the 2 types and 15 different lengths.

Glueing robot system

Geert Tanghe: “In our weaving machines the woven material is guided to the output side by 3 transport rollers. These have to be covered with rough textiles to obtain the necessary grip.” Delta Application Technics, which specialises in the design and production of application and dosing systems for liquid and paste products, was asked to develop a solution to apply the glue precisely and automatically to the metal transport rollers in such a way that the glue was spread evenly. “Integrating the dosing system in the same automated system of Valk Welding made it possible to make do with virtually the same robot system, which was a big advantage in terms of maintenance and usage. All that needed to be done was to replace the welding torch with a glue dispenser.”

Case Studies Industrial

The ALNEA-ZEUS control system for the selective soldering of parts makes use of KUKA KR AGILUS robots

December 2015

Warsaw-based ALNEA Sp. z.o.o. designs and manufactures semi- and fully-automatic mechanical, electrical and pneumatic production and testing devices for specific customer requirements. The Polish company has specialized in the selective soldering process. The ALNEA-ZEUS controller developed some years ago by ALNEA was meanwhile in need of a major update to ensure that it could continue to meet the standards set in the future by the international association of the printed circuit and electronics industries (IPC). The new version of the soldering controller had to be able to access all process parameters, such as the provision of relevant materials for the soldering process, their exact positioning and the prevention of solder spatter outside the work area. ALNEA implemented the new development in close cooperation with KUKA Robotics in Augsburg. Using a KUKA KR AGILUS robot, it was possible to achieve considerable improvement in the precision of the soldering process, eliminate error sources and reduce the production time by 50 percent.
The soldering process used in so-called through-hole technology (THT) requires the utmost precision. The variable parameters, such as flux quantity, pre-heating time and temperature, wetting time or solder temperature, have a decisive influence on the quality. Furthermore, material-related influences must also be taken into consideration. The small structures and the close proximity of components that must not be wetted leave no room for error. With THT, repair processes are time- and cost-intensive, often not reproducible and in some cases not even allowed. The goal of the electronics industry is thus the zero-error process. “A reliably controlled selective soldering process is the decisive first step on the path to zero-error production for our customers,” says Krzysztof Kamiński, President of the Board of ALNEA Sp. Z.o.o.

Avoidance of errors by means of process monitoring and correction

One major cause of errors in the selective soldering process is solder bridges. These occur in lead-free soldering, for example, due to the lower weight of the solder alloy or insufficient application of flux. All associated process steps should thus be monitored reliably. Incorrectly or imprecisely positioned modules can also cause problems in the selective soldering process. Monitoring and possible correction of their positions is also of decisive importance. For these reasons, in addition to the further development of the controller, it was also necessary for ALNEA to install a robot that could perform the soldering operation and precisely position the components. “Only a modern robot can guarantee the precision required for this soldering process,” emphasizes Kamiński. When searching for the suitable model, ALNEA opted to work together with KUKA. “What swung it for us was the favorable price/performance ratio and the excellent technical support from the KUKA team,” explains the President. Moreover, the KUKA KR C4 controller also met ALNEA’s requirement that the process had to be controlled via a simple teach pendant. The open architecture of this controller supports effortless technical integration into existing machine environments.

Small, fast and precise: the KUKA KR 6 R900 sixx

ALNEA decided in favor of a KR 6 R900 sixx robot from the KR AGILUS series as a prototype. The outstanding characteristics of this series include extremely high speeds combined with high repeatability and precision. Thanks to their symmetrical design, KR AGILUS robots take full advantage of their work envelope. To enable their extremely streamlined contours for operation in confined spaces, KUKA has routed the energy supply system internally. The KR 6 R900 sixx not only guarantees utmost precision and high working speed in a space-saving design, with a payload of just 6 kg and a maximum reach of 900 mm, the robot also achieves a repeatability of < =0.03 mm and is thus ideally suited to the requirements of the soldering process. Essentially, however, other KUKA robot models can also be combined with the new ALNEA-ZEUS control system in addition to the KR 6 R900 sixx.

Commands directly via the teach pendant

“During integration of the robotic automation solution, the communication between the soldering controller and the robot controller had to be coordinated,” explains Kamiński, recalling one of the challenges. For this, a software package for controlling the parameters of the selective soldering process was loaded, in a manner of speaking, into the robot’s memory. In this way, ALNEA’s customers can control the robot directly in the production process using the KUKA smartPAD teach pendant. Commands are transferred to the ALNEA-ZEUS controller via Ethernet communication. The controller then executes the command on the basis of the customer-specific hardware and software. The solution dispenses with a PLC or HMI panel and requires no additional interfaces.

The result: 50 percent shorter process time and minimization of errors

The KUKA KR 6 R900 sixx precisely meets the requirements placed on it by the selective soldering process. It controls the motions of the soldering iron and also holds the board in a fixed position. Thanks to the robotic automation solution developed by ALNEA, all parameters of the selective soldering process can now be monitored reliably via the teach pendant. Furthermore, all data provided by the KUKA robot are fed into the system and used. This includes, among other things, monitoring of the feeding and positioning of components and controlling of other external equipment. This has led not only to a noticeable reduction of errors, but also to a significant increase in productivity. “With the new solution, we have shortened the process time by 50 percent,” stresses Kamiński. Thanks to the ability to monitor the process via the teach pendant, the training requirements for customer employees are also kept to a modest level. There is no more need to engage three different people: process, robots and controllers specialists. Now, after a short training, even the direct worker can manage the process and the soldering robot.

Under the lead of the Tübingen-based Max Planck Institute for Biological Cybernetics (MPI), Fraunhofer IPA has co-developed a new cable-driven parallel robot that is the first one capable of transporting humans while at the same time setting new standards in terms of workspace, acceleration and payload for a motion simulator. The scientists have thus succeeded in decisively advancing a technology previously used for automation solutions in the field of intralogistics.

Under the lead of the Tübingen-based Max Planck Institute for Biological Cybernetics (MPI), Fraunhofer IPA has co-developed a new cable-driven parallel robot that is the first one capable of transporting humans while at the same time setting new standards in terms of workspace, acceleration and payload for a motion simulator. The scientists have thus succeeded in decisively advancing a technology previously used for automation solutions in the field of intralogistics.

To date, cable-driven parallel robots have been used in production environments, where they meet high requirements. The systems surpass conventional industrial robots in size and payload by between one and two orders of magnitude. The end effector can be freely moved with high accuracy by up to eight cables and winches. Based on this technology and in a world first, the idea of a cable-driven motion simulator has now been realized under the lead of Professor Heinrich Bülthoff from MPI for Biological Cybernetics.

Technical innovations

In the cable-driven simulator, the motion of the simulator cabin is controlled by eight unsupported steel cables attached to winches. In contrast to conventional motion simulators, the use of cables makes it possible to reduce the moving mass and to scale the workspace to any required size. A total drive power of 348 kW allows the cabin to accelerate at 1.5 times gravitational acceleration along freely programmable paths inside a 5 x 8 x 4 m³ workspace. In addition, the cables can be reattached in under an hour to enable the simulator to be adapted to different cabins and thus used for a range of scenarios.

During the two-year collaboration between both Institutes, Philipp Miermeister, a member of Fraunhofer IPA´s Cable-driven Robotics working group headed by Junior Professor Andreas Pott, has contributed much know-how to driving forward the design and realization of the simulator. The scientists have not only implemented the control algorithms, but also developed a lightweight yet rugged carbon fibre cabin capable of withstanding the high dynamic loads during operation. Made entirely from carbon fibre tubes, the cabin frame maximizes the usable cabin volume with a diameter of 260 cm for projection surfaces and cockpit instrumentation. This allows it to be used for high-quality video projections and realistic operator interfaces. At the same time, the light 80 kg frame is capable of accelerating at high speed while also withstanding high forces, because, in operation, the cables pull on the outer structure with up to 1.5 tonnes.

Its large workspace and dynamic capabilities make the simulator suitable for a wide spectrum of VR (virtual reality) applications, including driving/flight simulation as well as investigation of basic perception processes in humans. "This simulator offers us entirely new possibilities for studying motion perception with possible applications in neurological research into balance disorders," says Professor Bülthoff, who is a long-time perception researcher.

Successful collaboration

There is a history of collaboration between the Fraunhofer and Max Planck Institutes. Eleven joint projects are currently in progress. "With the cable-driven simulator, the scientists from both Institutes have once again demonstrated how the combination of basic research and industry-oriented technology development can lead to innovative products," says Professor Thomas Bauernhansl, Institute Director at Fraunhofer IPA.

The duAro robot has been released in Asia. The Americas and Europe product launches are scheduled for June 2016, to allow for safety requirements for collaborative operation with humans in those marketplaces to have been met. Until then, the duAro robot can be operated in conformance with local robot safety standards and regulations including safety fence.

New Robot Offering for the Manufacturing of Products with Short Life Cycles

The duAro robot has been released in Asia. The Americas and Europe product launches are scheduled for June 2016, to allow for safety requirements for collaborative operation with humans in those marketplaces to have been met. Until then, the duAro robot can be operated in conformance with local robot safety standards and regulations including safety fence.

Kawasaki Robotics has announced that it has launched the "duAro" -an innovative & new, dual-arm SCARA robot that can coexist with humans in the workplace.

Industrial robots have been developed and intended mainly for mass production involving long product life cycles. However, in fields where new models are introduced frequently at intervals of a few months, automation is considered difficult despite demand for robotization, in terms of both preparation period and cost-effectiveness. Today, Kawasaki offers a brand-new robot that is applicable to such fields.

The new "duAro" robot’s area of motion is the same as that of a person, with motions similar to those of human arms and independent movements for each arm, made possible because of its dual-arm configuration. Through our consistent pursuit of ease of use, we integrated two articulated arms that move simply in the horizontal direction, and we introduced direct teaching functionality into the robot´s configuration, resulting in a robot that’s both easy to teach and practical. With the integration of the body and controller into the wheeled base, the robot is quite easy to install and relocate.

The robot has two arms that reach horizontally from the body and that move together as a pair. This configuration can easily perform operations similar to those of a person using both arms within a one-person space. Equipped with a collision detection function and a safety function that slows down its motion when near a person, the robot can be reliably operated in tandem with the operations of workers adjacent to the machine.

The name of the dual-arm robot, "duAro", is a combination of two English words-dual and robot. With this name, we intend to highlight the concept of a dual-arm machine that can provide users with a sense of reliability, security, and approachability.

1. Features

  • Saves space (fits into a single-person area)
While the arrangement of two conventional SCARA robots occupies a relatively large space, the "duAro" robot, integrating two coaxial arms and a controller into a single unit, occupies only a single-person space. Additionally, its coaxial dual-arm structure makes the two arms less prone to interfere with each other, making it possible to perform coordinated movement, which has not been possible in the case of using two SCARA robots.
  • Ease of introduction
The wheeled base on which the arms are mounted accommodates the controller, making it easy to move and install the robot at any location. Its dual-arm operations also make it easy to support operations without jigs or to replace it with other robots and/or people. This enables the user to launch systems more quickly than conventional systems, which often take excessive time when changing production lines, as well as to quickly respond to restarts after an emergency stop.
  • Coexistence with people in the workplace
Low-power motors and a deceleration function linked with an area-monitoring enable the "duAro" to coexist with people during work operations. The "duAro" also comes with numerous safety functions, including a collision detection function that instantaneously stops the robot´s movement in response to a possible person-robot collision.
  • Ease in teaching operation
Products with short life cycles entail frequent changes of programs and teaching, heightening the hurdle of robotics introduction. We thus adopted a simple horizontally articulated structure and direct teaching functionality to simplify teaching as much as possible. Anyone can perform the teaching movements easily.
  • Various options
In addition to direct teaching, teaching operations can be conveyed via tablet or teaching pendant. Also, multiple robots can be configured with a single terminal. A "duAro" robot can also be equipped with a vision system. A standard grippers option is also available, allowing the user to customize the specification of the arms, including the arm length and the number of rotating axes, in order to configure the arms in a way that fits with various necessary operations. In the future, the "duAro" will support clean specifications and a single-arm configuration, covering a wide range of applications.

2. Main Specifications

Series name : duAro
Robot name : duAro 1
Model name : WD002N
Arm type : Horizontal articulated
Degree of free movement : 4 axes x 2 (Max. 6 axes x 2)
Standard reach : 760 mm
Max payload : 2 kg/arm
Repeatability : ±0.05 mm

South Korea-based Yujin Robot, a leader in delivering robotic solutions, unveiled GoCart V2.0, the 2nd version of GoCart, the autonomous meal-transport robot designed to operate in all elderly and health care facilities.

Seoul, Korea, October 28, 2015 - South Korea-based Yujin Robot (KOSDAQ: 056080), a leader in delivering robotic solutions, unveiled GoCart V2.0 (http://gocart.yujinrobot.com/), the 2nd version of GoCart, the autonomous meal-transport robot designed to operate in all elderly and health care facilities.

Based on the feedback received during trade show participations and demonstrations in Germany, USA and Sweden last year, Yujin Robot’s Innovation Team moved forward developing a larger and stronger GoCart version to better meet their customers’ needs.

With this new GoCart V2.0 the Innovation Team travelled to Spain in order to conduct a field test during September 10 - 23, 2015. The field test has been carried out at Ave Maria Foundation, a care facility for people with intellectual disabilities located in Sitges, in conjunction with Robotnik Automation S.L.L. and the Robotics Institute for Dependency.

During the field test the team worked closely with the staff and managers at Ave Maria to find out the facilitys needs in meal, linen and other daily logistics and developed service scenarios to save time, cut costs and further improve the care of the residents. In addition, Yujin Robot and Ave Maria hosted a successful demonstration for local visitors from the city of Sitges and representatives from hospital, hotel and business associations.

The feedback from managers and staff at Ave Maria was very positive and they expressed their strong interest in adopting the GoCart system in their facility. Yujin Robot and Ave Maria agreed to collaborate further on the commercialization of GoCart system. Robotnik Automation worked closely with Yujin Robot and Ave Maria on system integration and will continuously provide professional technical service in EU region.

GoCart combines the latest autonomous navigation and mobility technologies developed by Yujin Robot with state-of the-art meal-transport systems developed by ScanBox. GoCart has unprecedented flexibility and ease of use. It maps the environment and uses an array of sensors and cameras to autonomously carry out its deliveries without interfering with people or other objects. With its IoT-based interface, GoCart easily connects with any facility’s existing IT system including elevators and automatic doors and works with smartphones, tablets, PCs, and smart TVs.

The Association for Advancing Automation (A3) published a white paper entitled "Robots Fuel the Next Wave of U.S. Productivity and Job Growth" in which data from the Bureau of Labor Statistics and a wide range of manufacturing firms document how and why increasing the use of robots is associated with increased employment.

5 October 2015

The Association for Advancing Automation (A3) published a white paper entitled "Robots Fuel the Next Wave of U.S. Productivity and Job Growth"

in which data from the Bureau of Labor Statistics and a wide range of manufacturing firms document how and why increasing the use of robots is associated with increased employment.
Key statistics from the A3 white paper show that during the non-recessionary periods - 1996-2000, 2002-2007, and 2010-2014 - general employment and robot shipments both increased. Since 2010, the robotics industry in the United States has grown substantially. Even during this period of record-breaking robot sales, U.S. employment increased. This new data is in stark contrast to media coverage and a perception that increasing use of robots causes higher rates of unemployment in the U.S.
"We are seeing concrete shifts in the factors that resulted in cuts to the U.S. manufacturing work force over the past few decades," said Jeff Burnstein, president of A3. "Manufacturing automation increasingly provides the flexibility in the variety of tasks robots perform to drive improvements in overall product quality and time to market."
Burnstein concluded, "One of the biggest challenges we now face is closing the skills gap to fill jobs. Robots are optimizing production more than ever, increasing global competitiveness, and performing dull, dirty and dangerous tasks that enable companies to create higher-skilled, better-paying, and safer jobs where people use their brains, not their brawn."
As companies seek to bring manufacturing operations stateside while remaining cost-competitive, they continue to turn to automation to help lead the new wave of productivity and job growth in the U.S.
"The whole premise for our company is to bring manufacturing back to this country, and our new robot fits perfectly with that master plan," said Geoff Escalette, CEO of faucet-maker RSS Manufacturing & Phylrich in Costa Mesa, California. "Our robot not only makes it possible to increase production speed without buying additional CNC machines, but also helped us open up 30 percent more capacity on existing machinery."
Robotics also helps companies stay competitive when seeking new talent - particularly those who are interested in long-lasting careers working with technology. "It’s really an opportunity for us to grow," reports Matt Tyler, president and CEO of Vickers Engineering, a contract precision engineering manufacturer in Michigan. "Because we have robotics and are able to compete on a global scale, it makes the U.S. more competitive in manufacturing, and that’s good for all of us."
To download the white paper, please visit our



IFR Press Releases

By 2018 global sales of industrial robots will on average grow year on year by 15 percent - the numbers of units sold will double to around 400,000 units. Five major markets representing 70 percent of the total sales volume: China, Japan, USA, South Korea and Germany.

“The main driver of this development is the global competition of industrial production. The automation witnessed by the automotive sector and the electrical/electronics industry comes out top here with a market share of 64 percent”, says Arturo Baroncelli, President of the International Federation of Robotics (IFR).

Within this context, the rapid automation in China represents a unique development in the history of robotics. The number of industrial robots sold increased by 56 percent alone last year in comparison to 2013. China is the largest and fastest growing robotics market in the world. The potential remains enormous despite the recent economic downturn. After all Chinese production industries currently have a robotic density of just 36 units per 10,000 employees. To compare: As the front-runner South Korea deploys 478 industrial robots per 10,000 employees followed by Japan (315 units) and Germany (292 units). It is estimated that more than one-in-three of the global supply of industrial robots will be installed in the Republic of China in 2018.

The statistics on robotic density likewise indicate huge opportunities for growth in the USA. Production industries there deploy just 164 industrial robots per 10,000 employees right now. The USA is currently automating its economy at high speed. The aim is to strengthen the country as an industrial centre and to retrieve outsourced production. In 2014 the number of installed robots increased by 11 percent to around 26,000 units - making it third in the world.

In Europe it is Germany that takes the lead by some distance. Within one year (2014) the sales figures increased by around 10 percent to about 20,100 units - to date the largest number of sales registered within twelve months. Despite the already very high robotic density existing there, the world’s fifth largest robotics market remains on a path of expansion - driven primarily by the automotive industry.

Global investments made by the automotive industry in industrial robots have increased significantly since 2010. 2014 was a new record year with about 100,000 newly installed robots - up 43 percent compared to the previous year. This boom has been fuelled by new production capacities in emerging markets and a wave of modernisation sweeping through established auto-making countries. A large proportion of robotics technology in 2014 was purchased by suppliers of electronic components to the automotive industry. These include battery manufacturers and car IT enterprises.

In 2014 the electrical/electronics sector likewise posted a new record - sales increased by 34 percent compared to the previous year. The strong demand for industrial robots in the production of consumer electronics, communication equipment as well as computer and medical technology adds up to a total global market share of 21 percent.

The wave of digital transformation and automation will continue to drive the triumphant march of industrial robots onwards up to 2018. “Industry 4.0” projects mean that human-robot teams, for example, are on the cusp of a break-through. Simplification of the use of robots will additionally open up the market for new applications. This is equally true of small and medium-sized companies as it is for large corporations in all sectors. Besides the automotive and electronics industries, this development is also being increasingly felt in the metal processing, plastics, food and packaging industries.

“The market volume available to industrial robots is enormous. Including supporting services we estimate the global market value to be 32 billion US dollars for 2014”, sums up IFR President Baroncelli.

IFR Press Releases

By 2018 global sales of privately used service robots will increase to around 35 million units. At 25 million units, domestic robots (vacuum cleaners, lawn mowers, window cleaners etc.) will be right at the top of the future shopping lists of private customers.

Estimated sales value - upwards of 12 billion US dollars (2015-2018). Added to that there are around nine million entertainment- and leisure robots with an estimated volume of 7.6 billion US dollars (2015-2018).

At the same time service robots for professional use boom. The biggest markets in this segment are defence, agriculture and logistics. It is anticipated that by 2018 a total of over 150,000 units will be sold at a total value of around 20 billion US dollars. So says the 2015 World Robot Statistics, published by the International Federation of Robotics (IFR).

“In 2014 the demand for service robots rose yet again, posting impressive rates of growth”, says Martin Hägele, Chairman of IFR’s Service Robot Group and author of the study. “The sale of domestic robots for private customers increased by 28 percent to three million units at the last count - a second consecutive year-on-year increase. In 2014 sales of entertainment robots registered a 40 percent increase compared to the previous year, while sales of professional service robots registered solid growth at 11.5 percent.”

Future market for private robotic assistants

With household and garden robotic assistants already an established field in the private sector, another major market of tomorrow is for robotic assistants used in the care of the elderly and the disabled. Background: With one eye on the ageing population, many countries have initiated research projects aimed at using hi-tech robots to assist older people and those with limited mobility. Manufacturers sold 4,416 units of these kinds of robotic assistants in 2014 (2013: 699). The trend in this segment therefore continues to be a positive one. Sales showed a 542-percent year-on-year increase - even if partly based on a higher number of registration figures.

Service robots for professional applications

24,200 units of service robots for professional applications were sold in 2014 (2013: 21,700). Broken down into market shares, some 45 percent of this number is attributable to defence systems. Within this business area the sales of unmanned air systems make up a total of 82 percent of the volume. The sales figures rose by 7 percent in 2014.
Alongside this, the agricultural sector accounted for around one-quarter of all orders for professional service robots. The total number of field robots sold in 2014 amounted to 5,700 units, representing a market value of just about one billion US dollars and growth in sales of twelve percent. The number of milking robots sales rose to 5,180 units in 2014 - eight percent up on the previous year.

Logistics systems likewise continued on a path of success during the previous year. Around 2,700 systems were installed in 2014 - representing a rate of growth of 27 percent compared to 2013. The manufacturing sector alone purchased 2,100 automatic guided vehicles.

In 2014 sales of medical robots fell by 5 percent to 1,224 units in comparison to the previous year. The most significant area of application is robot-assisted surgical and treatment systems (978 units). At an average price of one million US dollars including auxiliary services, these service robots constitute the most expense price segment. With sales valued in the region of 1.3 billion US dollars, medical robots account for 35 percent of the total value of service robots for professional applications. By way of financing options, manufacturers are therefore also offering their customers leasing models.

The exoskeleton market has likewise developed strongly over a short period. With 273 systems sold in 2014 (2013: 160), the rate of growth came in at 80 percent, meaning that very good forecasts can be expected in the coming years. Initially developed primarily for military purposes, these body-worn systems are undergoing rapid further development for applications relating to the rehabilitation or assistance of people with restricted mobility. The first body-worn lifting aids deployed in the professional sphere are being used to provide power assistance and facilitate ergonomic working even for physically demanding tasks. In this context exoskeletons can deliver full-body power assistance or be designed to assist certain body parts only.

Start-ups are focussing on the service robot market

Alongside providing actual numbers for various products, the IFR analyses also reveal that of all the enterprises engaged in the service robot market 15 percent are start-ups, i.e. technology-driven firms less than five years old. This underscores the market potential that entrepreneurs and investors have identified in the continuously growing field of robotics.
Finally it should be mentioned that the statistical data for service robots represents a conservative estimate, because the sales figures used were either stated by the companies themselves or taken directly from them.

Contact IFR

Gudrun Litzenberger

IFR General Secretary
IFR Statistical Department

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-1502
Fax: +49 69-6603-2502
E-Mail: [email protected]

Nina Kutzbach

Assistant IFR Statistical Department

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-1518
Fax: +49 69-6603-2518
E-Mail: [email protected]

Silke Lampe

Assistant IFR Secretariat

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-1697
Fax: +49 69-6603-2697
E-Mail: [email protected]