In this example of screw tightening at Chinese automotive manufacturer CSVW, a collaborative robot picks up a screw tightening gun to tighten three screws on an engine, puts down the first gun, then picks up a second in tighten two other screws. A worker meanwhile performs other tasks on the engine.

Identification of the task

The automobile engine assembly process is flexible and complex and the Operator’s station is relatively compact. This project is conducted using SIASUN SCR5 collaborative robot to complete the screw tightening task of automobile engine assembly line. There is no need to install protective fencing on the site, operators and SCR5 robot are in the same workspace to complete the various tasks. The SCR5 robot holds the tightening gun to tighten 5 screws of 2 types and the robot can change the tightening gun automatically by equipping a changing gun plate at the end. While the robot is tightening the screw, the operator on site completes the operation of lubricating and other parts assembling.

Why human robot collaboration is the optimal solution?

In the automotive industry, the automation rate of pressing, welding, painting and final assembly processes is already very high, but the engine and final assembly plants are unable to use traditional automation equipment to realize automatic reformation due to the complex and flexible assembly processes of the engine and the whole vehicle and the compact workspace. However, collaborative robots have unique advantages over traditional industrial robots, and can effectively help automobile manufacturers to achieve the goal of automatic reformation.

The advantages are as followed. First of all, the collaborative robot has the safety features of collision detection, so there is no need to install protective fencing to ensure the safety of operators, and the robot footprint is quite small which effectively saves the operation space. Secondly, the collaborative robot is designed with light weight to better adapt to the complex and flexible process in the production site. Thirdly, collaborative robot has the function of traction and demonstration in programming. It can be programmed by manual dragging, which greatly reduces the time of instruction and reduces the difficulty of operation and makes it easier to use.

Tractive teaching realizes trajectory programming

Tractive teaching realizes trajectory programming, © image: SIASUN

How is it solved (configuration of the workplace and different steps of operation). This project uses one SIASUN SCR5 collaborative robot and robot base, two tightening guns, one changing gun tray and other necessary fixtures to realize screw tightening.

Here are the following steps

  1. After the engine is in place, and jacked to the right position, the signal is given to the robot. The SCR5 robot holds 1 tightening gun by the changing gun tray to complete the tightening task of 3 screws on the engine sequentially. The tightening torque is controlled by tightening gun.
  2. SCR5 put down the first gun and replace the second gun to tighten the other two screws in order.
  3. When the screws are being tightened, the cooperative robot and the on-site workers are in the same operating position to share workspace. The on-site workers install the back oil seal to the cylinder block and then pre-tight 8 bolts combined with oil seal and cylinder block.
  4. The SCR5 robot puts down the tightening gun and returns to its original position.
  5. After the robot is in place, the completed signal is given to the work station, the production line is released into the next process
SCR5 carries a tightening gun to complete the assembly of the engine nozzle

SCR5 carries a tightening gun to complete the assembly of the engine nozzle, © image: SIASUN


Comment to the project solution

The project used the domestic collaboration robots with completely independent intellectual property rights, completed engine assembly screw task. With no fences and a small working space, this project realizes the task with the cooperative safety operation between human and robots, completes the designated operation tasks stably and efficiently, helps customers improve product quality and saves labor costs. This truly reflects the collaboration function of collaborative robot, and helps revolutionizing the automobile manufacturing mode.

Contact IFR

Dr. Susanne Bieller

IFR General Secretary

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-1502
E-Mail: secretariat(at)ifr.org

Dr. Christopher Müller

Director IFR Statistical Department

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-11 91
E-Mail: statistics(at)ifr.org

Silke Lampe

Assistant IFR Secretariat

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-1697
E-Mail: secretariat(at)ifr.org

Nina Kutzbach

Assistant IFR Statistical Department

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-1518
E-Mail: statistics(at)ifr.org