"

LT Automation and Intelligent Systems have developed a robotic system with transport boxes for automatically checking and sorting blood samples at Aalborg University Hospital.

Aalborg University Hospital is the largest hospital in the North Jutland region of Denmark. Up to 3,000 blood samples arrive here in the lab every day. They must be tested and sorted – a time-consuming and monotonous process which was done manually until now. The university hospital has now automated the procedure: a robot-based system and intelligent transport boxes ensure the quality of the samples – and show how workflows in hospitals can be simplified by automation.

New process reduces the workload on employees and optimizes workflows

Up to 3,000 blood samples are delivered to the lab in Aalborg University Hospital every day and need to be presorted in accordance with the requested test. This task is monotonous on the one hand, and requires particular care on the other. In order to free up lab technicians from this work, the hospital set itself the goal of automating the sorting process for blood samples. Two local companies were involved in achieving this: LT Automation A/S designed and implemented the robotic solution. The software developer Intelligent Systems A/S developed the software that monitors the temperature of the blood samples during transportation.

The previous manual process was as follows: the lab staff opened the transport boxes on arrival, removed the blood samples and sorted them for further clinical analysis. Because of the large number of boxes, the hospital employees often suffered from tendon and muscle injuries as a result of the repetitive work. “We wanted to automate this process to ease the burden on our employees,” explains Annebirthe Bo Hansen, Department Head at Aalborg University Hospital. “Furthermore, we were looking for a solution to improve monitoring of the quality and temperature of the blood samples.”

KUKA robots and RFID logger facilitate quality assurance

In order to optimize the workflow, LT Automation and Intelligent Systems developed a robotic solution as well as an innovative transport box. Two KUKA KR AGILUS series robots, a KR 3 and a KR 10, were installed in the sorting system. “There were several reasons for choosing a robot from KUKA,” states LT Automation CEO Lasse Thomsen. “One of them was that the robots meet the technical requirements. And another reason was that the white external appearance fits with the image expected in a sterile environment.” The robots are controlled via the mxAutomation control system. A conveyor belt feeds the transport boxes to the robots shielded by Plexiglas screens.

© KUKA
A conveyor belt feeds the transport boxes © KUKA

The special feature of the “intelligent transport box” is the integrated RFID data logger, which not only tracks the transport route of every single box. The logger also saves what temperature was present inside the box at what time. A key factor, as explained by Annebirthe Bo Hansen: “In order to ensure the quality of the blood samples, the temperature must consistently be 21° C +/- 1° C.” By introducing the “intelligent transport box”, the hospital realized that this was not always guaranteed in the past. “The new technology has helped us to discover and rectify sources of error,” states Annebirthe Bo Hansen, expressing her satisfaction. “That is an important improvement.”

Robot automatically segregates incorrectly transported blood samples

The blood samples travel long distances before reaching the hospital: they are taken in general medical practices in the region surrounding the hospital. Doctors place the glass tubes filled with the samples vertically into the transparent transport boxes, which are stored in an appropriate cabinet ensuring the optimal temperature. At time of collection the courier scans the boxes, enabling their transport route to be tracked. The courier brings the blood samples to the hospital where they are scanned and registered on arrival.

In the lab, a technician places the transport boxes on the input conveyor of the robotic system. At that moment, an RFID scanner installed in the room reads the data logger. “If the scanner detects that the temperature inside a box has deviated from the specified temperature at any time during its journey, it automatically sends a notification to the robot,” explains Lasse Thomsen. “The robot offloads the affected box from the system to the lab technician’s workplace.” The employee takes a close look at the data saved on the logger in order to decide whether the blood samples in the box can still be used.

© KUKA
Robots sort the glass tubes © KUKA

If the data logger does not indicate any improper temperatures, the first robot opens the box, takes the blood samples out and sets them down for sorting. Then the robot places the cover back onto the box and offloads it so that it can be reused for transportation. At the same time, the second robot sorts the unpacked glass tubes by the color of their stopper, which it identifies with the aid of a scanner. The presorted samples are output from the system such that the lab technician can carry out the blood test. On average, the system needs 1.5 minutes per box, which is equivalent to a capacity of forty boxes per hour.

Optimizing the process and improving the workplace

The new system was initially tested in March 2019 and went into full operation in August. “We are highly satisfied with this solution,” concludes Annebirthe Bo Hansen. “The working environment and workflows have improved considerably with this change.” The lab technicians now have more time not only to analyze the blood samples but also to spend with patients. In addition, the automated sorting and continuous temperature control in the transport box have reduced potential sources of error.

“The new system makes Aalborg University Hospital a forerunner on the path to ‘Hospital 4.0’,” says Lasse Thomsen. “Automation can help simplify workflows and assure high quality especially in times when there is a shortage of skilled personnel.” For this reason, he sees great potential in the robotic solution: it would be of interest to all hospitals with their own clinical biochemical lab, in this form or similar.

Contact IFR

Dr. Susanne Bieller

IFR General Secretary

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-1502
E-Mail: secretariat(at)ifr.org

Dr. Christopher Müller

Director IFR Statistical Department

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-11 91
E-Mail: statistics(at)ifr.org

Silke Lampe

Assistant IFR Secretariat

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-1697
E-Mail: secretariat(at)ifr.org

Nina Kutzbach

Assistant IFR Statistical Department

Lyoner Str. 18
DE-60528 Frankfurt am Main
Phone: +49 69-6603-1518
E-Mail: statistics(at)ifr.org